Use este identificador para citar ou linkar para este item:
https://repositorio.ufba.br/handle/ri/38872
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Akrami, Kevan MIchal | - |
dc.date.accessioned | 2024-01-15T12:00:06Z | - |
dc.date.available | 2024-01-15T12:00:06Z | - |
dc.date.issued | 2023-11-24 | - |
dc.identifier.citation | AKRAMI, Kevan Michal. Desenvolvimento de novos sistemas de pontuação de severidade para pacientes de UTI. 2023. 81 f. Tese (Doutorado) - Universidade Federal da Bahia, Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, 2023. | pt_BR |
dc.identifier.uri | https://repositorio.ufba.br/handle/ri/38872 | - |
dc.description.abstract | Objetives: i) determine whether modification of the neurologic compononent of SOFA outperforms the unmodified score, ii) develop novel age calibrated score iii) determine whether a pneumonia specific score outperforms common ICU and pneumonia severity scores and evaluate the performance of this score in a multi-center COVID-19 ICU cohort. Methods: Prospective cohort studies of adult ICU patients hospitalized at Hospital de Cidade in Salvador, Bahia, Brazil followed by a multi-center prospective cohort study of adults hospitalized in the ICU of COVID treatment centers in Bahia. Results: Modification of the neurologic component SOFA with either a novel score for defining neurologic system deficits, Full Outline of UnResponsiveness (FOUR) or Richmond Agitation-Sedation Score (RASS) did not improve prediction of ICU mortality (SOFA-GCS AUC = 0.74 vs SOFA-RASS AUC = 0.71 and SOFA-FOUR AUC = 0.67). A novel Age Calibrated ICU Score (ACIS) outperformed the SAPS3 score in prediction of mortality in our ICU cohort (AUC = 0.80 vs 0.72). The pneumonia shock score demonstrated signficant performance improvement (AUC = 0.80) over existing ICU and pneumonia severity scores including SAPS 3, qSOFA, CURB-65, and CRB-65 (AUC = 0.74, 0.64, 0.65, and 0.63, respectively). The calibrated score subsequently performed well in those admitted to the ICU with SARSCoV- 2 infection (AUC = 0.80). Conclusion: Given the advanced age of our cohort and likelihood of an increasingy elderly ICU population worldwide, we demonstrated that the novel age calibrated severity score outperformed SAPS3, offering a tool that may serve to help triage limited resources to those most likely to survive their critical illness. The calibrated pneumonia shock score accurately idenitifed those at risk for ICU mortality from pneumonia in both pre- and post-COVID cohorts. This offers another simple bedside tool to help accurately assign individuals based on severity in subsequent clinical trials. | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal da Bahia | pt_BR |
dc.subject | UTI | pt_BR |
dc.subject | Unidades de Terapia Intensiva | pt_BR |
dc.subject | Escore severidade | pt_BR |
dc.subject | Pneumonia | pt_BR |
dc.subject | Mortalidade | pt_BR |
dc.subject.other | ICU | pt_BR |
dc.subject.other | Intensive Care Units | pt_BR |
dc.subject.other | Severity Score | pt_BR |
dc.subject.other | Pneumonia | pt_BR |
dc.subject.other | Mortality | pt_BR |
dc.title | Desenvolvimento de novos sistemas de pontuação de severidade para pacientes de UTI | pt_BR |
dc.title.alternative | Development of novel severity scoring systems for ICU patients | pt_BR |
dc.type | Tese | pt_BR |
dc.contributor.referees | Andrade, Bruno de Bezerril | - |
dc.publisher.program | Pós-Graduação em Ciências da Saúde (POS_CIENCIAS_SAUDE) | pt_BR |
dc.publisher.initials | UFBA | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS DA SAUDE | pt_BR |
dc.contributor.advisor1 | Andrade, Bruno de Bezerril | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5853710848006520 | pt_BR |
dc.contributor.referee1 | Oliveira, Viviane Sampaio Boaventura de | - |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/5684058125095235 | pt_BR |
dc.contributor.referee2 | Bozza, Fernando Augusto | - |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/4150524692179865 | pt_BR |
dc.contributor.referee3 | Camelier, Aquiles Assunção | - |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/9328696757796523 | pt_BR |
dc.contributor.referee4 | Queiroz, Artur Trancoso Lopo de | - |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/5222182427171497 | pt_BR |
dc.contributor.referee5 | Santos, Luciane Amorim | - |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/5234646852674978 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/6436484292412131 | pt_BR |
dc.description.resumo | Objetivos: i) determinar se a modificação do componente neurológico do SOFA supera o escore original, ii) desenvolver um novo escore calibrado para a idade, iii) determinar se um escore específico de pneumonia supera os escores de UTI e pneumonia e avaliar o desempenho deste escore em um coorte multi-centrico de UTI com COVID-19. Métodos: Estudos de coorte prospectivos de pacientes adultos internados em UTI no Hospital da Cidade em Salvador, Bahia, Brasil, seguidos de um estudo de coorte prospectivo multicêntrico de adultos internados em UTI de centros de tratamento de COVID na Bahia. Resultados: A modificação do componente neurológico de SOFA com um novo escore para definir déficits do sistema neurológico, Full Outline of UnResponsiveness (FOUR) ou Richmond Agitation- Sedation Score (RASS) não melhorou a previsão de mortalidade na UTI (SOFA-GCS AUC = 0,74 vs. AUC SOFA-RASS = 0,71 e AUC SOFA-FOUR = 0,67). Um novo escore de UTI calibrado por idade (ACIS) superou o escore SAPS3 na previsão de mortalidade em nossa coorte de UTI (AUC = 0,80 vs 0,72). A pontuação de pneumonia shock score demonstrou melhora significativa no desempenho (AUC = 0,80) em relação às escores existentes de UTI e de pneumonia, incluindo SAPS 3, qSOFA, CURB-65 e CRB-65 (AUC = 0,74, 0,64, 0,65 e 0,63, respectivamente). Posteriormente, essa escore teve um bom desempenho naqueles internados na UTI com infecção por SARS-CoV-2 (AUC = 0,80).Conclusão: Dada a idade avançada da nossa coorte e a probabilidade de uma população cada vez maior de idosos em UTI em todo o mundo, demonstramos que o novo escore de gravidade calibrado por idade superou o SAPS3, oferecendo uma ferramenta que pode servir para ajudar na triagem de recursos limitados para aqueles com maior probabilidade de sobreviver a situações críticas. doença. O pneumonia shock score identificou com precisão aqueles em risco de mortalidade na UTI por pneumonia em coortes pré e pós-COVID. Isso oferece outra ferramenta simples à beira do leito para ajudar a atribuir indivíduos com precisão com base na gravidade em ensaios clínicos subsequentes. | pt_BR |
dc.publisher.department | Faculdade de Medicina da Bahia | pt_BR |
dc.relation.references | 1. Bouch DC, Thompson JP. Severity scoring systems in the critically ill. Continuing Education in Anaesthesia Critical Care & Pain 2008;8(5):181–5. 2. Lambden S, Laterre PF, Levy MM, Francois B. The SOFA score—development, utility and challenges of accurate assessment in clinical trials. Critical Care 2019;23(1):374. 3. Bias in Treatment Assignment in Controlled Clinical Trials | NEJM [Internet]. [cited 2023 May 7];Available from: https://www.nejm.org/doi/full/10.1056/NEJM198312013092204 4. Haniffa R, Isaam I, De Silva AP, Dondorp AM, De Keizer NF. Performance of critical care prognostic scoring systems in low and middle-income countries: a systematic review. Critical Care 2018;22(1):18. 5. Moons KGM, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ 2009;338:b606. 6. The impact of low-risk intensive care unit admissions on mortality probabilities by SAPS II, APACHE II and APACHE III - Beck - 2002 - Anaesthesia - Wiley Online Library [Internet]. [cited 2023 May 7];Available from: https://associationofanaesthetistspublications. onlinelibrary.wiley.com/doi/10.1046/j.1365-2044.2002.02362.x 7. Vincent J-L, Opal SM, Marshall JC. Ten reasons why we should NOT use severity scores as entry criteria for clinical trials or in our treatment decisions. Crit Care Med 2010;38(1):283–7. 8. Bosch NA, Teja B, Law AC, Pang B, Jafarzadeh SR, Walkey AJ. Comparative Effectiveness of Fludrocortisone and Hydrocortisone vs Hydrocortisone Alone Among Patients With Septic Shock. JAMA Internal Medicine 2023;183(5):451–9. 9. Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension. New England Journal of Medicine 2023;388(6):499–510. 10. Kurtz P, Bastos LSL, Salluh JIF, Bozza FA, Soares M. SAPS-3 performance for hospital mortality prediction in 30,571 patients with COVID-19 admitted to ICUs in Brazil. Intensive Care Med 2021;47(9):1047–9. 11. Rothen HU, Stricker K, Einfalt J, et al. Variability in outcome and resource use in intensive care units. Intensive Care Med 2007;33(8):1329–36. 12. Sarkar R, Martin C, Mattie H, Gichoya JW, Stone DJ, Celi LA. Performance of intensive care unit severity scoring systems across different ethnicities in the USA: a retrospective observational study. The Lancet Digital Health 2021;3(4):e241–9. 13. Tallgren M, Bäcklund M, Hynninen M. Accuracy of Sequential Organ Failure Assessment (SOFA) scoring in clinical practice. Acta Anaesthesiol Scand 2009;53(1):39–45. 14. Ramazani J, Hosseini M. Comparison of Full Outline of Unresponsiveness Score and Glasgow Coma Scale in Medical Intensive Care Unit. Ann Card Anaesth 2019;22(2):143–8. 62 15. Interrater Reliability and Predictive Validity of the FOUR S... : Journal of Neuroscience Nursing [Internet]. [cited 2023 Nov 9];Available from: https://journals.lww.com/jnnonline/abstract/2009/10000/interrater_reliability_and_predictive_va lidity_of.6.aspx 16. Kramer AA, Zimmerman JE, Knaus WA. Severity of Illness and Predictive Models in Society of Critical Care Medicine’s First 50 Years: A Tale of Concord and Conflict. Crit Care Med 2021;49(5):728–40. 17. Liu X, Shen M, Lie M, et al. Evaluating Prognostic Bias of Critical Illness Severity Scores Based on Age, Gender, and Primary Language in the USA: A Retrospective Multicenter Study [Internet]. 2022 [cited 2023 May 7];2022.08.01.22277736. Available from: https://www.medrxiv.org/content/10.1101/2022.08.01.22277736v2 18. Marik PE. Management of the critically ill geriatric patient. Crit Care Med 2006;34(9 Suppl):S176- 182. 19. Fernandez R, Ventura L, Macharete C, et al. Severity scores should incorporate limitations on life support for predicting mortality. Med Intensiva 2019;43(8):509–10. 20. Waterer G. Severity Scores and Community-acquired Pneumonia. Time to Move Forward. Am J Respir Crit Care Med 2017;196(10):1236–8. 21. Wilfong EM, Lovly CM, Gillaspie EA, et al. Severity of illness scores at presentation predict ICU admission and mortality in COVID-19. J Emerg Crit Care Med 2021;5:7. 22. Sevransky JE, Checkley W, Martin GS. CRITICAL CARE TRIAL DESIGN AND INTERPRETATION: A BRIEF PRIMER. Crit Care Med 2010;38(9):1882–9. 23. Tan YY, Papez V, Chang WH, Mueller SH, Denaxas S, Lai AG. Comparing clinical trial population representativeness to real-world populations: an external validity analysis encompassing 43 895 trials and 5 685 738 individuals across 989 unique drugs and 286 conditions in England. The Lancet Healthy Longevity 2022;3(10):e674–89. 24. Pellathy TP, Pinsky MR, Hravnak M. ICU Scoring Systems. Crit Care Nurse 2021;41(4):54–64. 25. de Grooth H-J, Geenen IL, Girbes AR, Vincent J-L, Parienti J-J, Oudemans-van Straaten HM. SOFA and mortality endpoints in randomized controlled trials: a systematic review and meta-regression analysis. Crit Care 2017;21(1):38. 26. Liang B, Su J, Shao H, Chen H, Xie B. The outcome of IV vitamin C therapy in patients with sepsis or septic shock: a meta-analysis of randomized controlled trials. Crit Care 2023;27(1):109. 27. Torres A, Motos A, Cillóniz C, et al. Major candidate variables to guide personalised treatment with steroids in critically ill patients with COVID-19: CIBERESUCICOVID study. Intensive Care Med 2022;48(7):850–64. 28. Guidet B, Vallet H, Boddaert J, et al. Caring for the critically ill patients over 80: a narrative review. Annals of Intensive Care 2018;8(1):114. 63 29. Ni Y-N, Chen G, Sun J, Liang B-M, Liang Z-A. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care 2019;23:99. 30. Dexamethasone in Hospitalized Patients with Covid-19. New England Journal of Medicine 2021;384(8):693–704. 31. Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherry S. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol 2021;19(7):425–41. | pt_BR |
dc.contributor.refereesLattes | http://lattes.cnpq.br/5853710848006520 | pt_BR |
dc.contributor.refereesIDs | https://orcid.org/0000-0001-6833-3811 | pt_BR |
dc.type.degree | Doutorado | pt_BR |
Aparece nas coleções: | Tese (PPgCS) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Kevan Akrami tese doutorado ingles.pdf | 16,38 MB | Adobe PDF | Visualizar/Abrir | |
Kevan Akrami tese doutorado porto.pdf | 16,74 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.