Use este identificador para citar ou linkar para este item:
https://repositorio.ufba.br/handle/ri/39164
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Borges, Júlia de Oliveira | - |
dc.date.accessioned | 2024-03-06T17:10:12Z | - |
dc.date.available | 2024-03-06T17:10:12Z | - |
dc.date.issued | 2024-02-27 | - |
dc.identifier.uri | https://repositorio.ufba.br/handle/ri/39164 | - |
dc.description.abstract | Objective: To evaluate the effects of physical training and/or a high-protein and low-carbohydrate diet on the modulation of plasma and muscle irisin and morphological and functional changes in white and brown adipose tissue of male Wistar rats in an obesity model. Methods: 28 male Wistar rats with obesity induced by a high-calorie diet (HC) were divided into 4 groups: Group submitted to the HC diet and sedentary (n=7); Group submitted to the HC diet and trained (n=7); Group submitted to a high-protein and low-carbohydrates diet (HP) and sedentary; Group submitted to HP diet and trained (n=7). After a period of 12 weeks, the animals were euthanized and the subcutaneous (TASC), epididymal (TAE) and brown (TAM) adipose tissues, as well as the gastrocnemius muscle and thoracic blood were collected for further analysis. Body composition, serum and tissue levels of irisin/FNDC5, gastrocnemius muscle morphology and TASC and TAM were evaluated. Energy metabolism parameters were also evaluated in TASC and TAM and markers of mitochondrial activity, inflammatory profile, oxidative damage and activity of antioxidant enzymes in TASC, TAE and TAM. Statistical analyzes were performed using the two-way ANOVA test (2 diets x 2 training conditions), followed by the Bonferroni post-test. Data were presented as mean±standard error. Results: The HP diet and moderate physical training for 12 weeks reduced body weight and adiposity, as well as the area and diameter of adipocytes in the TASC and increased the weight and area of gastrocnemius muscle fibers, as well as immunostaining of the precursor of irisin (FNCD5) and reduced tissue triglyceride content. Serum irisin concentration increased only as a result of physical training. In TAM, both physical training and diet reduced tissue triglyceride content, however, only training reduced the area occupied by unilocular adipocytes and increased UCP-1 gene expression. Only physical training increased the enzyme citrate synthase, a marker of mitochondrial activity, in TASC, TAE and TAM. Furthermore, training also determined greater beneficial effects on redox balance, increasing gene expression and activity of antioxidant enzymes in TASC and TAM and reducing oxidative markers (TBARS, carbonyl proteins and total nitrites). The inflammatory profile was positively modulated by both the HP diet and physical training, which reduced the TNF-α/IL-10 ratio in TASC, TAE and TAM, increased adiponectin gene expression, as well as immunostaining of NF-κB, MCP -1 and the total macrophage/M2 macrophage ratio in TASC. Singly, physical training increased the anti-inflammatory markers IL-10 and IL-27 and reduced the inflammatory markers IL-6 (TASC and TAM), IL-1β (TAE), as well as total macrophages, crown-like structures and lymphocytes in TASC and NF-κB immunostaining in TAM. Conclusion: In the model studied, the effects of a high-protein diet restricted in carbohydrates and physical training for 12 weeks attenuated the changes caused by obesity on parameters of body composition, tissue morphology and metabolism, and the inflammatory and oxidative profile of adipose tissues. Our findings reinforce the importance of regular physical training as it positively modulate irisin and confer better morphofunctional benefits and on inflammatory and oxidative profiles in adipose tissue deposits of obese animals. | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal da Bahia | pt_BR |
dc.subject | Obesidade | pt_BR |
dc.subject | Dieta hiperproteica | pt_BR |
dc.subject | Treinamento físico | pt_BR |
dc.subject | Tecido adiposo | pt_BR |
dc.subject | Irisina | pt_BR |
dc.subject.other | Obesity | pt_BR |
dc.subject.other | High protein diet | pt_BR |
dc.subject.other | Physical training | pt_BR |
dc.subject.other | Adipose tissue | pt_BR |
dc.subject.other | Irisin | pt_BR |
dc.title | Efeitos da dieta hiperproteica restrita em carboidratos e/ou treinamento físico sobre concentração de irisina e parâmetros morfofuncionais do tecido adiposo de ratos Wistar obesos | pt_BR |
dc.title.alternative | Effects of high-protein and low-carbohydrate diet and/or physical training on irisin concentration and morphofunctional parameters of adipose tissue in obese Wistar rats | pt_BR |
dc.type | Dissertação | pt_BR |
dc.publisher.program | Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF) | pt_BR |
dc.publisher.initials | UFBA | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::METABOLISMO E BIOENERGETICA | pt_BR |
dc.contributor.advisor1 | Paula, Rafael Pereira de | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8708600077570027 | pt_BR |
dc.contributor.advisor-co1 | Gusmão, Amélia Cristina Mendes de Magalhães | - |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/6313221703674661 | pt_BR |
dc.contributor.referee1 | Santos Filho, Luciano Evangelista dos | - |
dc.contributor.referee2 | Soares, Telma de Jesus | - |
dc.contributor.referee3 | Gusmão, Amélia Cristina Mendes de Magalhães | - |
dc.creator.Lattes | http://lattes.cnpq.br/8753595924780417 | pt_BR |
dc.description.resumo | Objetivo: Avaliar os efeitos do treinamento físico e/ou da dieta hiperproteica restrita em carboidratos e sobre a modulação da irisina plasmática e muscular e alterações morfológicas e funcionais no tecido adiposo branco e marrom de ratos Wistar machos em um modelo de obesidade. Métodos: 28 ratos Wistar machos com obesidade induzida por dieta hipercalórica (HC) foram divididos em 4 grupos: Grupo submetido à dieta HC e sedentário (n=7); Grupo submetido à dieta HC e treinado (n=7); Grupo submetido à dieta hiperproteica restrita em carboidratos (HP) e sedentário; Grupo submetido à dieta hiperproteica restrita em carboidratos (HP) e treinado (n=7). Após o período de 12 semanas, os animais foram eutanasiados e os tecidos adiposos subcutâneo (TASC), epididimal (TAE) e marrom (TAM), assim como o músculo gastrocnêmio e o sangue torácico foram coletados para posteriores análises. Avaliou-se a composição corporal, dosagem sérica e tecidual de irisina/FNDC5, morfologia do músculo gastrocnêmio e TASC e TAM. Foram avaliados também parâmetros de metabolismo energético no TASC e TAM e marcadores de atividade mitocondrial, perfil inflamatório, dano oxidativo e atividade das enzimas antioxidantes no TASC, TAE e TAM. As análises estatísticas foram realizadas através do teste ANOVA two-way (2 dietas x 2 condições de treinamento), seguida pelo pós-teste de Bonferroni. Os dados foram apresentados como média±erro padrão. Resultados: A dieta HP e o treinamento físico moderado por 12 semanas reduziram o peso e adiposidade corporal, bem como a área e o diâmetro dos adipócitos no TASC e aumentaram o peso e a área das fibras do músculo gastrocnêmio, bem como, a imunomarcação do precursor da irisina (FNCD5) e reduziram o conteúdo tecidual de triglicerídeos. A concentração sérica de irisina aumentou apenas por efeito do treinamento físico. No TAM, tanto treinamento físico quanto a dieta reduziram o conteúdo tecidual de triglicerídeos, no entanto, somente o treinamento reduziu a área ocupada por adipócitos uniloculares e aumentou a expressão gênica de UCP-1. Apenas o treinamento físico aumentou a enzima citrato sintase, marcador de atividade mitocondrial, no TASC, TAE e TAM. Ademais, o treinamento também determinou maiores efeitos benéficos no balanço redox, aumentando a expressão gênica e atividade de enzimas antioxidantes no TASC e TAM e reduzindo marcadores oxidativos (TBARS, proteínas carboniladas e nitritos totais). O perfil inflamatório foi modulado positivamente tanto pela dieta HP quanto pelo treinamento físico, que reduziram a razão TNF-α/IL-10 no TASC, TAE e TAM, aumentaram a expressão gênica de adiponectina, bem como a imunomarcação de NF-κB, MCP-1 e a razão macrófagos totais/ macrófagos M2 no TASC. Isoladamente, o treinamento físico aumentou os marcadores anti-inflamatórios IL-10 e IL-27 e reduziu os marcadores inflamatórios IL-6 (TASC e TAM), IL-1β (TAE), bem como os macrófagos totais, estruturas crown-like e linfócitos no TASC e a imunomarcação de NF-κB no TAM. Conclusão: No modelo estudado, os efeitos da dieta hiperproteica restrita em carboidratos e do treinamento físico por 12 semanas atenuaram as alterações provocadas pela obesidade sobre parâmetros de composição corporal, morfologia e metabolismo tecidual, perfil inflamatório e oxidativo dos tecidos adiposos. Nossos achados reforçam a importância do treinamento físico regular por modular positivamente a irisina e conferir melhores benefícios morfofuncionais e sobre os perfis inflamatórios e oxidativos nos depósitos de tecido adiposo de animais obesos. | pt_BR |
dc.publisher.department | Instituto Multidisciplinar em Saúde (IMS) | pt_BR |
dc.relation.references | ABDEL-SATTAR, E. et al. Pharmacological Action of a Pregnane Glycoside, Russelioside B, in Dietary Obese Rats: Impact on Weight Gain and Energy Expenditure. Frontiers in Pharmacology, v. 9, p. 990, 2018. ADJEITEY, C. N.-K. et al. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production. American Journal of Physiology-Endocrinology and Metabolism, v. 305, n. 3, p. E405–E415, 1 ago. 2013. AEBI, H. Catalase in vitro. Methods Enzymol, v. 05, p. 121-126, 1984. AHIMA, R.S.; FLIER, J.S. Adipose tissue as an endocrine organ. Endocrinology and Metabolism, v. 11, n. 8, p. 327-332, 2000. AKIYAMA, T. et al. High-fat hypercaloric diet induces obesity, glucose intolerance and hyperlipidemia in normal adult male Wistar rat. Diabetes Res Clin Pract., v. 31, p. 27-35, 1996. AL AAMRI, K. S. et al. The effect of Low-Carbohydrate ketogenic Diet in the management of obesity compared with low caloric, low-fat diet. Clinical Nutrition ESPEN, fev. 2022. ALCALÁ, M. et al. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Scientific Reports, v. 7, n. 1, 22 nov. 2017. ALMAGHRABI, O. A. Molecular and biochemical investigations on the effect of quercetin on oxidative stress induced by cisplatin in rat kidney. Saudi J Biol Sci. v. 22(2), p. 227-31, 2015. ALMEIDA, J. A. et al. High-Protein Diet Associated with Bocaiuva Supplementation Decreases Body Fat and Improves Glucose Tolerance in Resistance-Trained Rats. Journal of Medicinal Food, v. 23, n. 3, p. 258–265, 1 mar. 2020. ALMEIDA, M. E.F.; SANTOS, V.S. Cafeteria diet with chocolate, peanut and cookie: effectiveness in induction of overweight and dyslipidemia in rats. Rev. Saúde e Biol., v.10, n.3, p.15-24, 2015. ANGELIS, R. C.; TIRAPEGUI, J. Fisiologia da nutrição humana. Aspectos básicos, aplicados e funcionais. 2.ed. São Paulo: Atheneu, 2007 ARHIRE, L. I.; MIHALACHE, L.; COVASA, M. Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome. Frontiers in Endocrinology, v. 10, 2 ago. 2019. ASRIH, A. et al. Ketogenic Diet Impairs FGF21 Signaling and Promotes Differential Inflammatory Responses in the Liver and White Adipose Tissue. PLoS One, v. 10, n. 5, 2015. ASTRUP, A.; RABEN, A.; GEIKER, N. The role of higher protein diets in weight control and obesity-related comorbidities. International Journal of Obesity, v. 39, n. 5, p. 721–726, 26 dez. 2014. ATAKAN, M.M.; KOSAR, S.N.; GUZEL, Y.; TIN, H.T.; YAN, X. The role of exercise, diet, and cytokines in preventing obesity and improving adipose tissue. Nutrients, v.13, n.5, 2021. AVILA, E.T.P. et al. Effects of high-protein diet containing isolated whey protein in rats submitted to resistance training of aquatic jumps. Nutrition, v. 53, p. 85-94, 2018. AZAR, J.T. et al. The effect of different types of exercise training on diet-induced obesity in rats, cross-talk between cell cycle proteins and apoptosis in testis. Gene, 5;754:144850, 2020. AZAR, S.T.; BEYDOUN, H.M.; ALBADRI, M.R. Benefits of ketogenic diet for management of type two diabetes: a review. J Obes Eat Disord., v. 2, n. 2, 2016. AZZOUT-MARNICHE, D. et al. Liver glyconeogenesis: a pathway to cope with postprandial amino acid excess in high-protein fed rats?. Am J Physiol Regul Integr Comp Physiol., v. 292, n. 4, p. 1400-1407, 2007. BADMAN, M.K. et al. A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am J Physiol Endocrinol Metab., v. 297, n.5, 2009. BARBER, T. M. et al. The Low-Carbohydrate Diet: Short-Term Metabolic Efficacy Versus Longer-Term Limitations. Nutrients, v. 13, n. 4, 3 abr. 2021. BARROSO, R.; TRICOLI, V.; UGRINOWITSCH, C. Adaptações neurais e morfológicas ao treinamento de força com ações excêntricas. Rev. bras. ciênc. mov, p. 111–122, 2005. BELLICHA, A. et al. Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: An overview of 12 systematic reviews and 149 studies. Obes Rev., v. 22, 2021. BELZA, A. et al. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. The American Journal of Clinical Nutrition, v. 97, n. 5, p. 980–989, 6 mar. 2013. BITTENCOURT, G.P.L.S. Efeitos das dietas hiperlipídicas com óleos de coco ou de linhaça restritas em carboidratos e do exercício sobre parâmetros metabólicos e hepáticos em ratos obesos. Tese (Doutorado) - Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, 2022. BLOOR, I.D.; SYMONDS, M. E. Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Hormones and Behavior, v. 66, n. 1, p. 95-103, 2014. BOSTRÖM, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, v. 481, n. 7382, p. 463–468, jan. 2012. BOUTELDJA, N. et al. Using positron emission tomography to study human ketone body metabolism: A review. Metabolism clinical and experimental, v. 63, p. 1375-1384, 2014. BOWLER, A.; POLMAN, R. Role of a Ketogenic Diet on Body Composition, Physical Health, Psychosocial Well-Being and Sports Performance in Athletes: A Scoping Review. Sports (Basel), v. 8, n. 10, p. 131, 2020. BRADLEY, R. L. et al. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. American Journal of Physiology. Endocrinology and Metabolism, v. 295, n. 3, p. E586-594, 1 set. 2008. BURNEIKO, R.C. et al. Interaction of hypercaloric diet and physical exercise on lipid profile, oxidative stress and antioxidant defenses. Food Chem Toxicol., v. 44, n. 7, p. 1167-1172, 2006. CARBONE, J. W.; PASIAKOS, S. M. Dietary protein and muscle mass: Translating science to application and health benefit. Nutrients, v. 11, n. 5, p. 1136, 22 maio 2019. CASTRO, E.; SILVA, T.E.O.; FESTUCCIA, W.T. Critical review of beige adipocyte thermogenic activation and contribution to whole-body energy expenditure. Horm Mol Biol Clin Investig., v. 31. n. 2, 2017. CHAPUT, J. et al. Physical Activity Plays an Important Role in Body Weight Regulation. J Obes., v. 2011, 2011. CHIN, M. S. et al. External Volume Expansion in Irradiated Tissue. Plastic and Reconstructive Surgery, v. 137, n. 5, p. 799e807e, maio 2016. CHO, K. et al. Combined untargeted and targeted metabolomic profiling reveals urinary biomarkers for discriminating obese from normal-weight adolescents. Pediatric Obesity, v. 12, n. 2, p. 93–101, 22 fev. 2017. CHOUCHANI, E.T.; KAJIMURA, S. Metabolic adaptation and maladaptation in adipose tissue. Nat Metab., v. 1, n. 2, p. 189-200, 2019. CHURCH, T. Exercise in obesity, metabolic syndrome, and diabetes. Prog Cardiovasc Dis., v. 53, n.6, p. 412-418, 2011.CINTI, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research, v. 46, n. 11, p. 2347–2355, 8 set. 2005. COLAIANNI, G. et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Scientific Reports, v. 7, n. 1, 6 jun. 2017. COQUEIRO, R.S. et al. Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. Clinical Nutrition ESPEN., v. 29, p. 203-212, 2019. CORDEIRO, M.M. et al. Physical exercise attenuates obesity development in Western-diet fed obese rats independently of vitamin D supplementation. Clin Exp Pharmacol Physiol., v. 49, n. 6, p. 633-642, 2022. CROVETTI, R.; PORRINI, M.; SATANGELO, A.; TESTOLIN, G. The influence of thermic effect of food on satiety. Eur J Clin Nutr., v. 52, n. 7, p. 482-488, 1998. CUNHA, M. J. et al. Physical exercise reverses glutamate uptake and oxidative stress effects of chronic homocysteine administration in the rat. Int. International Journal of Developmental Neuroscience, v. 30, p. 6974, 2012. DIAS, M. R. DE J. et al. Therapeutic or lifelong training effects on pancreatic morphological and functional parameters in an animal model of aging and obesity. Experimental Gerontology, v. 175, p. 112144, 1 maio 2023. DISPIRITO, J.R.; MATHIS, D. Immunological contributions to adipose tissue homeostasis. Semin Immunol., v. 27, n. 5, p. 315-321, 2015. DONE, A. J.; TRAUSTADÓTTIR, T. Nrf2 mediates redox adaptations to exercise. Redox Biology, v. 10, p. 191–199, dez. 2016. DONG, J. et al. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. International Journal of Obesity, v. 40, n. 3, p. 434–442, 5 out. 2016. DRAPER, H. H. et al. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radical Biology & Medicine, v. 15, n. 4, p. 353–63, out. 1993. EFFTING, P.S. Resistance exercise modulates oxidative stress parameters and tnf-α content in the heart of mice with diet-induced obesity. Arq Bras Cardiol., v. 112, n. 5, p. 545-552, 2019.ENDITTI, P.; MEO, S. D. Effect of Training on Antioxidant Capacity, Tissue Damage, and Endurance of Adult Male Rats. International Journal of Sports Medicine, v. 18, n. 07, p. 497–502, out. 1997. FANAEI, H., et al. Gallic acid protects the liver against NAFLD induced by dust exposure and high-fat diet through inhibiting oxidative stress and repressing the inflammatory signaling pathways NF-kβ/TNF-α/IL-6 in Wistar rats. Avicenna J Phytomed. v. 11(5), p. 527-540, 2021. FARHAT, F. et al. Effect of exercise training on oxidative stress and mitochondrial function in rat heart and gastrocnemius muscle. Redox Report, v. 20, n. 2, p. 60–68, 20 set. 2014. FEINMAN, R. D. et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition, v. 31, n. 1, p. 1–13, jan. 2015. FENG, B; ZHANG, T.; XU, H. Dinâmica adiposa humana e saúde metabólica. Ana NY Acad. Sci., v. 1281, p. 160-177, 2013. FERRETTI, R. et al. High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGF-PI3K-AKT-mTOR pathway. PloS one, v. 13, n. 10, p. e0199728, 2018. FLANDERS, K.C. et al. Transforming growth factor-beta 1: histochemical localization with antibodies to different epitopes. J Cell Biol., v. 108, n. 2, p. 653-660, 1989. FOSTER, M.T.; PAGLIASSOTTI, M.J. Metabolic alterations following visceral fat removal and expansion. Adipocyte, v. 1, n. 4, p. 192-199, 2012. FRANÇA, G. DE O. et al. Effects of short-term high-intensity interval and continuous exercise training on body composition and cardiac function in obese sarcopenic rats. Life Sciences, v. 256, p. 117920, set. 2020. FRANZONI, F. et al. Physical Exercise Improves Total Antioxidant Capacity and Gene Expression in Rat Hippocampal Tissue. Archives Italiennes De Biologie, v. 155, n. 1-2, p. 1–10, 1 jul. 2017. FRENCH, W. W. et al. A high-protein diet reduces weight gain, decreases food intake, decreases liver fat deposition, and improves markers of muscle metabolism in obese zucker rats. Nutrients, v. 9, n.6, p. 587, 2017.FURINO, V. DE O. et al. Dietary Intervention, When Not Associated With Exercise, Upregulates Irisin/FNDC5 While Reducing Visceral Adiposity Markers in Obese Rats. Frontiers in Physiology, v. 12, p. 564963, 2021. FURUKAWA, S. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation. v. 114, p. 1752-1761, 2004. GAAL, L.F.V. ; MERTENS, I.L.; BLOCK, C.E.D. Mechanisms linking obesity with cardiovascular disease. Nature., v. 444, n.7121, p. 875-880, 2006. GABRIEL, B.M.; ZIERATH, J.R. The limits of exercise physiology: from performance to health. Cell Metab., v. 25, n. 5, p. 1000-1011, 2017. GAO, S. et al. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes. PloS One, v. 11, n. 1, p. e0147480, 2016. GARBER, C.E. et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports., v. 43, n. 7, p. 1334-1359, 2011. GARBOW, J.R. et al. Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet. Am J Physiol Gastrointest Liver Physiol., v. 300, n. 6, p. 56-67, 2011. GARRITSON, J. D.; BOUDINA, S. The Effects of Exercise on White and Brown Adipose Tissue Cellularity, Metabolic Activity and Remodeling. Frontiers in Physiology, v. 12, 2 nov. 2021. GIBSON, A. A. et al. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obesity Reviews, v. 16, n. 1, p. 64–76, 17 nov. 2014. GLEESON, M. et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nature reviews. Immunology, v. 11, n. 9, p. 607–15, 2011. GOLBIDI, S.; LAHER, I. Exercise Induced Adipokine Changes and the Metabolic Syndrome. Journal of Diabetes Research, v. 2014, p. 1–16, 2014. GOLLISCH, K.S.C. et al. Effects of exercise training on subcutaneous and visceral adipose tissue in normal- and high-fat diet-fed rats. Am J Physiol Endocrinol Metab., v. 297, p. 495-504, 2009. GONÇALVES, L. F. et al. Ageing is associated with brown adipose tissue remodelling and loss of white fat browning in female C57BL/6 mice. International Journal of Experimental Pathology, v. 98, n. 2, p. 100–108, 1 abr. 2017.GONZALO-ENCABO, P. et al. The role of exercise training on low-grade systemic inflammation in adults with overweight and obesity: a systematic review. Int J Environ Res Public Health., v, 18, n. 24, 2021. GOOSSENS, G.H. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiology & Behavior, v. 94, n. 2, p. 204-218, 2008. GU, C.; SHI, Y.; LE, G. Effect of Dietary Protein Level and Origin on the Redox Status in the Digestive Tract of Mice. International Journal of Molecular Sciences, v. 9, n. 4, p. 464–475, 2 abr. 2008. GUO, K.-Y. et al. Effects of obesity on the relationship of leptin mRNA expression and adipocyte size in anatomically distinct fat depots in mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, v. 287, n. 1, p. R112-119, 1 jul. 2004. GUTIERREZ-REPISO, C. et al. FNDC5 could be regulated by leptin in adipose tissue. European Journal of Clinical Investigation, v. 44, n. 10, p. 918–925, 1 out. 2014. HAHN, W. S. et al. Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. American Journal of Physiology-endocrinology and Metabolism, v. 306, n. 9, p. E1033–E1045, 1 maio 2014. HAYES, M. R. et al. A Carbohydrate-Restricted Diet Alters Gut Peptides and Adiposity Signals in Men and Women with Metabolic Syndrome. The Journal of Nutrition, v. 137, n. 8, p. 1944–1950, 1 ago. 2007. HERAS, N. et al. Chronic Exercise Improves Mitochondrial Function and Insulin Sensitivity in Brown Adipose Tissue. Frontiers in Physiology, v. 9, 17 ago. 2018. HERMSDORFF, H. H. M.; MONTEIRO, J. B. R. Gordura visceral, subcutânea ou intramuscular: onde está o problema? Arquivos Brasileiros de Endocrinologia & Metabologia, v. 48, n. 6, p. 803–811, dez. 2004. HERNANDEZ, A.B. et al. The antiepileptic ketogenic diet alters hippocampal transporter levels and reduces adiposity in aged rats. J Gerontol A Biol Sci Med Sci., v. 73, n. 4, p. 450-458, 2018. HOFFMANN, C.; WEIGERT, C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harbor Perspectives in Medicine, v. 7, n. 11, p. a029793, 7 abr. 2017.HOLLAND, A.M. et al. Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers is sedentary rats and rats that exercised via resisted voluntary wheel running. Am J Physiol Regul Integr Comp Physiol., v. 311, n. 2, p. 337-351, 2016. HUANG, T. Response of Liver Metabolic Pathways to Ketogenic Diet and Exercise Are Not Additive. Med Sci Sports Exerc., v. 52, n. 1, p. 37-48, 2020. HUH, J. Y. et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism, v. 61, n. 12, p. 1725–1738, dez. 2012. JI, L.L.; KANG, C.; ZHANG, Y. Exercise-induced hormesis and skeletal muscle health. Free Radical Biology and Medicine, v. 98, p. 113-122, 2016. JONHNSTONE, A. et al. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr., v. 87, n. 1. p. 44-55, 2008. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/18175736/>. Acesso em: 04 jun. 2022. JUNIOR, S.A.O. et al. Diet-induced obesity causes metabolic, endocrine and cardiac alterations in spontaneously hypertensive rats. Med Sci Monit., v. 16, n. 12, p. 367-373, 2010. JUNIOR, S. A. O. et al. Differential nutritional, endocrine, and cardiovascular effects in obesity-prone and obesity-resistant rats fed standard and hypercaloric diets. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, v. 16, n. 7, p. BR208-217, 1 jul. 2010. KAWANISHI, N. et al. Exercise Attenuates M1 Macrophages and CD8+ T Cells in the Adipose Tissue of Obese Mice. Medicine & Science in Sports & Exercise, v. 45, n. 9, p. 1684–1693, set. 2013. KAWANISHI, N. et al. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exercise Immunology Review, v. 16, p. 105–118, 2010. KAWANISHI, N.; MIZOKAMI, T.; YANO, H.; SUZUKI, K. Exercise attenuates M1 macrophages and CD8+ T cells in the adipose tissue of obese mice. Med Sci Sports Exerc., v. 45, n. 9, p. 1684-1693, 2013.KEIPERT, S. et al. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. American Journal of Physiology-endocrinology and Metabolism, v. 306, n. 5, p. E469–E482, 1 mar. 2014. KESSLER, S.K. et al. Dietary therapies for epilepsy: Future research. Epilepsy Behav., v. 22, n.1, p. 17-22, 2011. KHALAFI, M. et al. The Impact of Moderate-Intensity Continuous or High-Intensity Interval Training on Adipogenesis and Browning of Subcutaneous Adipose Tissue in Obese Male Rats. Nutrients, v. 12, n. 4, p. 925, 27 mar. 2020. KHOO, J. et al. Exercise-induced weight loss is more effective than dieting for improving adipokine profile, insulin resistance, and inflammation in obese men. Int J Sport Nutr Exerc Metab., v. 25, n. 6, p. 566-575, 2015. KINZIG, K.P. et al. Energy balance and hypothalamic effects of a high-protein/low-carbohydrate diet. Physiology & Behavior, v. 92, n. 3, p. 454-460, 2007. KINZIG, K.P. et al. Sensitivity to the anorectic effects of leptin is retained in rats maintained on a ketogenic diet despite increased adiposity. Neuroendocrinology, v. 92, n. 2, p. 100-111, 2010. KINZIG, K.P.; TAYLOR, R.J. Maintenance on a ketogenic diet: voluntary exercise, adiposity and neuroendocrine effects. Int J Obes (Lond)., v. 33, n. 8, p. 824-830, 2009. KLAUS, S. et al. Expression of uncoupling protein 1 in skeletal muscle decreases muscle energy efficiency and affects thermoregulation and substrate oxidation. Physiological Genomics, v. 21, n. 2, p. 193–200, 14 abr. 2005. KLIEM, V. et al. Mechanisms involved in the pathogenesis of túbulo interstitial fibrosis in 5/6-nephrectomized rats. Kidney International, v. 49, n. 3, p. 666-678, 1996. KOLAHDOUZI, S.; TALEBI-GARAKANI, E.; HAMIDIAN, G.; SAFARZADE, A. Exercise training prevents high-fat diet-induced adipose tissue remodeling by promoting capillary density and macrophage polarization. Life sciences, v. 220, p. 32-43, 2019. KONOPKA, A. R.; HARBER, M. P. Skeletal Muscle Hypertrophy After Aerobic Exercise Training. Exercise and Sport Sciences Reviews, v. 42, n. 2, p. 53–61, abr. 2014. KOSTOGRYS, R.B. et al. Effect of Low Carbohydrate High Protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Environ Toxicol Pharmacol., v. 39, n. 2, p. 713-719, 2015. KUSMINSKI, C.M.; BICKEL, P.E.; SCHERER, P.E. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov., v. 15, n. 9, p. 639-660, 2016.LEE, J. H.; JUN, H.-S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Frontiers in Physiology, v. 10, 30 jan. 2019. LEE, P. et al. Irisin and FGF21 Are Cold-Induced Endocrine Activators of Brown Fat Function in Humans. Cell Metabolism, v. 19, n. 2, p. 302–309, fev. 2014. LEHNIG, A.C.; STANFORD, K.I. Exercise-induced adaptations to white and brown adipose tissue. Journal of Experimental Biology, v. 221, 2018. LEIDY, H. J. et al. The role of protein in weight loss and maintenance. The American Journal of Clinical Nutrition, v. 101, n. 6, p. 1320S1329S, 29 abr. 2015. LEVINE, R. L. et al. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 464–478, 1990. LI, J. et al. Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocrine Connections, v. 11, n. 3, 1 mar. 2022. LI, K., et al. Microcystins-LR induced apoptosis via S-nitrosylation of GAPDH in colorectal cancer cells. Ecotoxicology and Environmental Safety. v. 190, 110096, 2020. LI, X. SIRT1 and energy metabolism. Acta Biochimica et Biophysica Sinica, v. 45, n. 1, p. 51–60, 1 jan. 2013. LIMA, D. D. et al. Effects of two aerobic exercise training protocols on parameters of oxidative stress in the blood and liver of obese rats. J Physiol Sci., v. 68, n. 5, p. 699-706, 2018. LIRA, F. S. et al. Endurance training induces depot-specific changes in IL-10/TNF-α ratio in rat adipose tissue. Cytokine, v. 45, n. 2, p. 80–85, fev. 2009. LIU, Y.; DING, Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction, v. 30, n. 4, p. 123-131, 2017. LONGO, M. et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci., v. 20, n. 9, 2019. LU, Y. et al. Swimming exercise increases serum irisin level and reduces body fat mass in high-fat-diet fed Wistar rats. Lipids in Health and Disease, v. 15, n. 1, 13 maio 2016. MACDIARMID, J.; BLUNDELL, J. Dietary under-reporting: what people say about recording their food intake. European Journal of Clinical Nutrition, v. 51, n. 3, p. 199–200, mar. 1997. MACÊDO, S. M. et al. Effects of Dietary Macronutrient Composition on FNDC5 and Irisin in Mice Skeletal Muscle. Metabolic Syndrome and Related Disorders, v. 15, n. 4, p. 161–169, maio 2017. MAIOLI, T.U. et al. High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice. Inflamm Res., v. 65, n. 2, p. 169-178, 2016. MANNA, P.; JAIN, S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metab Syndr Relat Disord., v. 13, n. 10, p. 423-444, 2015. MANSUR, M. R. Efeito agudo da suplementação de carboidrato e proteína sobre o comportamento do eixo GH-IGF-I em fisiculturistas. Dissertação (Mestrado) - Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2018. MARGONIS, K. et al. Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radical Biology and Medicine, v. 43, n. 6, p. 901–910, set. 2007. MARKLUND, S. T., MARKLUND, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European journal of biochemistry, v. 47, p. 469-474, 1974. MARLATT, K.L.; RAVUSSIN, E. Brown adipose tissue: An update on recent findings. Curr Obes Rep., v.6, n.4, p. 389-396, 2017. MARTINS, F. et al. High-fat Diet Promotes Cardiac Remodeling in an Experimental Model of Obesity. Arquivos Brasileiros de Cardiologia, 2015. MASI, L.N.; et al. Combination of a high-fat diet with sweetened condensed milk exacerbates inflammation and insulin resistance induced by each separately in mice. Sci Rep., v.7, n. 1, 2017. MASSCHELIN, P. M. et al. The Impact of Oxidative Stress on Adipose Tissue Energy Balance. Frontiers in Physiology, v. 10, 22 jan. 2020. MATTA, L. et al. The effect of acute aerobic exercise on redox homeostasis and mitochondrial function of rat white adipose tissue. Oxidative Medicine and Cellular Longevity, v. 2021, 2021. MATTA, L. et al. The Effect of Acute Aerobic Exercise on Redox Homeostasis and Mitochondrial Function of Rat White Adipose Tissue. Oxidative Medicine and Cellular Longevity, v. 2021, p. 4593496, 2021. MAZUR-BIALY, A. I. et al. New insight into the direct anti-inflammatory activity of a myokine irisin against proinflammatory activation of adipocytes. Implication for exercise in obesity. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, v. 68, n. 2, p. 243–251, 1 abr. 2017. MCNALLY, M.A.; HARTMAN, A.L. Ketone Bodies in Epilepsy. J Neurochem., v. 121, n. 1, p. 28-35, 2012. MEDEIROS, C.S. et al. The effects of high-protein diet and resistance training on glucose control and inflammatory profile of visceral adipose tissue in rats. Nutrients, v. 13, n. 6, p. 1969, 2021. MENDHAM, A. E. et al. Exercise training improves mitochondrial respiration and is associated with an altered intramuscular phospholipid signature in women with obesity. Diabetologia, v. 64, n. 7, p. 1642–1659, 2021. MILAN, G. et al. Resistin and Adiponectin Expression in Visceral Fat of Obese Rats: Effect of Weight Loss. Obesity Research, v. 10, n. 11, p. 1095–1103, nov. 2012. MOON, J.; KOH, G. Clinical evidence and mechanisms of high-protein diet-induced weight loss. J Obes Metab Syndr., v. 29, n. 3, p. 166-173, 2020. MORENO-NAVARRETE, J. M. et al. Irisin Is Expressed and Produced by Human Muscle and Adipose Tissue in Association With Obesity and Insulin Resistance. The Journal of Clinical Endocrinology & Metabolism, v. 98, n. 4, p. E769–E778, abr. 2013. MOSTAFA, D.G.; SATTI, H.H.; KHALEEL, E.F.; BADI, R.M. A high-fat diet rich in corn oil exaggerates the infarct size and memory impairment in rats with cerebral ischemia and is associated with suppressing osteopontin and Akt, and activating GS3Kβ, iNOS, and NF-κB. Journal of Physiology and Biochemistry, v. 76, n. 3, p. 393-406, 2020. MUÑOZ, A. et al. Physical Exercise Improves Aging-Related Changes in Angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the Substantia Nigra. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, v. 73, n. 12, p. 1594–1601, 10 nov. 2018. MURPHY MP. How mitochondria produce reactive oxygen species. Biochem J. 2009 Jan 1;417(1):1-13. doi: 10.1042/BJ20081386. NAM, H. et al. Modulation of IL-27 in adipocytes during inflammatory stress. Obesity, v. 24, n. 1, p. 157–166, 6 dez. 2015. NORHEIM, F. et al. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS Journal, v. 281, n. 3, p. 739–749, 10 dez. 2013. PAGLIA, D. E.; VALENTINE, W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, v. 70, n. 1, p. 158–69, jul. 1967. PAN, R.; CHEN, Y. Management of Oxidative Stress: Crosstalk Between Brown/Beige Adipose Tissues and Skeletal Muscles. Frontiers in Physiology, v. 12, 16 set. 2021. PANG, C. et al. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. American Journal of Physiology-Endocrinology and Metabolism, v. 295, n. 2, p. E313–E322, ago. 2008. PAOLI, A. et al. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. J Transl Med., v. 18, n. 1, p. 104, 2020. PAOLI, A. et al. Effects of two months of very low carbohydrate ketogenic diet on body composition, muscle strength, muscle area, and blood parameters in competitive natural body builders. Nutrients, v. 13, n. 2, p. 374, 2021. PAOLI, A. et al. Ketogenic diet does not affect strength performance in elite artistic gymnasts. J Int Soc Sports Nutr., v. 9, n. 11, p. 34, 2012. PAPADOPOULOU, S. K.; NIKOLAIDIS, P. T. Low-Carbohydrate Diet and Human Health. Nutrients, v. 15, n. 8, p. 2004, 21 abr. 2023. PARK, K. H. et al. Circulating Irisin in Relation to Insulin Resistance and the Metabolic Syndrome. The Journal of Clinical Endocrinology & Metabolism, v. 98, n. 12, p. 4899–4907, dez. 2013. PARTO, P.; LAVIE, C. J. Obesity and CardiovascularDiseases. Current Problems in Cardiology, v. 42, n. 11, p. 376–394, nov. 2017. PEIRCE, V.; CAROBBIO, S.; VIDAL-PUIG, A. The different shades of fat. Nature, v. 510, n. 7503, p. 76-83, 2014. PERAKAKIS, N. et al. Physiology and role of irisin in glucose homeostasis. Nature Reviews Endocrinology, v. 13, n. 6, p. 324–337, 17 fev. 2017. PESTA, D.H.; SAMUEL, V.T. A high-protein diet for reducing body fat: mechanisms and possible caveats. Nutrition & Metabolism, v. 11, n. 53, 2014. PETRIDOU, A.; SIOPI, A.; MOUGIOS, V. Exercise in the Management of Obesity. Metabolism, v. 92, p. 163-169, 2019. PICHÉ, M.-E.; TCHERNOF, A.; DESPRÉS, J.-P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circulation Research, v. 126, n. 11, p. 1477–1500, 22 maio 2020. PINHEIRO-CASTRO, N. et al. Hypercaloric diet-induced obesity and obesity-related metabolic disorders in experimental models. Adv Exp Med Biol., v. 1134, p. 149-161, 2019. PIRES et al. Time-Course of Redox Status, Redox-Related, and Mitochondrial-Dynamics-Related Gene Expression after an Acute Bout of Different Physical Exercise Protocols. Life, v. 12, n. 12, p. 2113–2113, 15 dez. 2022. PRICE, N. T. et al. Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1: residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme. Biochemical Journal, v. 372, n. 3, p. 871–879, 15 jun. 2003. PUIGSERVER, P. et al. A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell, v. 92, n. 6, p. 829–839, mar. 1998. RANJBARAN, M., KADKHODAEE, M., SEIFI, B. Renal tissue pro-inflammatory gene expression is reduced by erythropoietin in rats subjected to hemorrhagic shock. J Nephropathol. v. 6(2), p. 69-73, 2017. doi: 10.15171/jnp.2017.12. REEVES, P.G.; NIELSEN, F.H.; JUNIOR, G.C.F. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr., v. 123, n. 11, p. 1939-1951, 1993. RENU, K. et al. Elevated lipolysis in adipose tissue by doxorubicin via PPARα activation associated with hepatic steatosis and insulin resistance. European Journal of Pharmacology, v. 843, p. 162–176, jan. 2019. RIBEIRO, L.C. et al. Ketogenic diet-fed rats have increased fat mass and phosphoenolpyruvate carboxykinase activity. Mol Nutr Food Res., v. 52, n. 11, p. 1365-1371, 2008. RIUS-PÉREZ, S. et al. PGC-1α, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxidative Medicine and Cellular Longevity, v. 2020, p. 1–20, 9 mar. 2020. RO, S.H. et al. Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species. Obesity, v. 111, n. 21, p. 7849–7854, 13 maio 2014. ROCA-RIVADA, A. et al. FNDC5/Irisin Is Not Only a Myokine but Also an Adipokine. PLoS ONE, v. 8, n. 4, p. e60563, 11 abr. 2013. ROGERO, M.M.; CALDER, P.C. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients, v. 10, n. 4, p. 432, 2018. ROSINI, T.C.; SILVA, A.S.R.; MORAES, C. Diet-induced obesity: rodent model for the study of obesity-related disorders. Rev Assoc Med Bras, v. 58, n. 3, p. 383-387, 2012. RUBIO-RUIZ, M. E. et al. Mechanisms underlying metabolic syndrome-related sarcopenia and possible therapeutic measures. International journal of molecular sciences, v. 20, n. 3, p. 647, 2019. SAKURAI, T. et al. Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue. Oxidative Medicine and Cellular Longevity, v. 2017, p. 1–12, 2017. SANTOS FILHO, L. E.. Influência da dieta cetogênica hiperproteica associada ou não ao exercício sobre a homeostase glicêmica e alterações hepatorrenais em ratos Wistar obesos. 2022. Tese (Doutorado) - Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, 2022. SCAFFIDI, C. et al. IL-27 increases energy storage in white adipocytes by enhancing glucose uptake and fatty acid esterification. Adipocyte, v. 12, n. 1, p. 2276346, 1 dez. 2023. SCHMID, H.; KETTELHUT, I.C.; MIGLIORINI, R.H. Reduced lipogenesis in rats fed a high-protein carbohydrate-free diet. Metabolism, v. 33, n.3, p. 219-223, 1984. SEVERINSEN, M. C. K.; PEDERSEN, B. K. Muscle–Organ Crosstalk: The Emerging Roles of Myokines. Endocrine Reviews, v. 41, n. 4, p. 594–609, 11 maio 2020. SHARMA, P.; AGNIHOTRI. Fish oil and corn oil induced differential effect on beiging of visceral and subcutaneous white adipose tissue in high-fat-diet-induced obesity. The Journal of Nutritional Biochemistry, v. 84, 2020. SHEN, K., et al. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor. Oxidative Medicine and Cellular Longevity. v. 2017, p. 1–11, 2017. 108 SILVEIRA, L. R. et al. Regulação do metabolismo de glicose e ácido graxo no músculo esquelético durante exercício físico. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 55, n. 5, p. 303–313, jun. 2011. SILVERSTEIN, R. L.; FEBBRAIO, M. CD36, a Scavenger Receptor Involved in Immunity, Metabolism, Angiogenesis, and Behavior. Science Signaling, v. 2, n. 72, p. re3–re3, 19 maio 2009. SISHI, B. et al. Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp Physiol., v. 96, p. 179-193, 2011. SKURK, T. et al. Relationship between Adipocyte Size and Adipokine Expression and Secretion. The Journal of Clinical Endocrinology & Metabolism, v. 92, n. 3, p. 1023–1033, 1 mar. 2007. SOENEN, S.; WESTERTERP-PLANTEGA, M.S. Proteins and satiety: implications for weight management. Curr Opin Clin Nutr Metab Care., v. 11, n. 6, p. 747-751, 2008. SOUSA, R.M.L. et al. Long-term high-protein diet intake reverts weight gain and attenuates metabolic dysfunction on high-sucrose-fed adult rats. Nutr Metab (Lond)., v. 15, n. 53, 2018. SPERETTA, G.F. F. et al. The effects of exercise modalities on adiposity in obese rats. Clinics, v. 67, n. 12, p. 1469-1477, 2012. SPINAZZI, M. et al. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nature protocols, v. 7, n. 6, p. 1235, 2012. Disponível em: <https://www.nature.com/articles/nprot.2012.058>. Acesso em: 07 jun. 2022. SRIVASTAVA, S. et al. Research communication a ketogenic diet increases brown adipose tissue mitochondrial proteins and ucp1 levels in mice. IUBMB Life, v. 65, n. 1, p. 58-66, 2013. STANFORD, K. I. et al. A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose Homeostasis. Diabetes, v. 64, n. 6, p. 2002–2014, 20 jan. 2015. SUAREZ-CUENCA, J.A. et al. Enlarged adipocytes from subcutaneous vs. visceral adipose tissue differentially contribute to metabolic dysfunction and atherogenic risk of patients with obesity. Scientific Reports, v. 11, 2021. SUKKAR, S.M.; MUSCARITOLI, M. A Clinical Perspective of Low Carbohydrate Ketogenic Diets: A Narrative Review. Front. Nutr., v. 8, 2021. TAM, C.; LECOULTRE, V.; RAVUSSIN, E. Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation, v. 125, n. 22, p. 2782-2791, 2012. TCHKONIA, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab., v. 17, n. 5, p. 644-656, 2013. TEIMOURIAN, M.; HOSEYN, F.; HASAN, M. Effect of Different Exercise Mode and Ursolic Acid Supplementation on FNDC5 and UCP1 Gene Expression and Plasma Irisin in Rats. International Journal of Sports and Exercise Medicine, v. 6, n. 1, 22 fev. 2020. TIPTON, K. D. Efficacy and consequences of very-high-protein diets for athletes and exercisers. Proceedings of the Nutrition Society, v. 70, n. 2, p. 205–214, 7 mar. 2011. TORRES-LEAL, F.L. et al. Adipose tissue inflammation and insulin resistance. Insulin Resistance, 2012. Disponível em: <https://www.intechopen.com/chapters/41436>. Acesso em: 02 jun. 2022. TRAYHURN, P.; BEATTIE, J.H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proceedings of the Nutrition Society, v. 60, n.3, p. 329-339, 2001. TREMBLAY, A.; DESPRÉS, J.; BOUCHARD, C. The effects of exercise-training on energy balance and adipose tissue morphology and metabolism. Sports Med., v. 2, n. 3, p. 223-233, 1985. TREVELLIN, E. et al. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through enos-dependent mechanism. Diabetes, v. 63, n. 8, p. 2800-2811, 2014. TSILOULIS, T.; WATT, M.J. Exercise and the regulation of adipose tissue metabolism. Prog Mol Biol Transl Sci., v. 135, p. 175-201, 2015. TSILOULIS, T; WATT M. J. Exercise and the Regulation of Adipose Tissue Metabolism. Progress in Molecular Biology and Translational Science. v. 135, p. 175-201, 2015. UPADHYAY, J. et al. Obesity as a Disease. Med Clin N Am., v. 102, n.1, p. 13-33, 2018. VARELA-RODRÍGUEZ, B. et al. FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle. Scientific Reports, v. 6, n. 1, 19 jul. 2016. VARGAS, S. et al. Efficacy of ketogenic diet on body composition during resistance training in trained men: a randomized controlled trial. J Int Soc Sports Nutr., v. 15, n. 1, p. 31, 2018. VAUGHAN, R. A. et al. Characterization of the metabolic effects of irisin on skeletal musclein vitro. Diabetes, Obesity and Metabolism, v. 16, n. 8, p. 711–718, 18 fev. 2014. VIEIRA-POTTER, V.J. Inflammation and macrophage modulation in adipose tissues. Cellular Microbiology, v. 16, n. 10, p. 1484-1492, 2014. VOLEK, J. S. et al. Carbohydrate Restriction has a More Favorable Impact on the Metabolic Syndrome than a Low Fat Diet. Lipids, v. 44, n. 4, p. 297–309, 12 dez. 2008. WAGATSUMA, A. Endogenous expression of angiogenesis-related factors in response to muscle injury. Molecular and Cellular Biochemistry, v. 298, n. 1-2, p. 151–159, 25 nov. 2006. WANG, Z. et al. Energy metabolism in brown adipose tissue. The FEBS journal, v. 288, n. 12, p. 3647–3662, 1 jun. 2021. WELLY, R.J. et al. Comparison of diet versus exercise on metabolic function and gut microbiota in obese rats. Med Sci Sports Exerc., v. 48, n. 9, p. 1688-1698, 2016. WEST, D. B. et al. Adipocyte blood flow is decreased in obese Zucker rats. American Journal of Physiology-regulatory Integrative and Comparative Physiology, v. 253, n. 2, p. R228–R233, 1 ago. 1987. WORLD HEALTH ORGANIZATION. Obesity and overweight. Disponível em: <https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight>. WU, M. V. et al. Thermogenic Capacity Is Antagonistically Regulated in Classical Brown and White Subcutaneous Fat Depots by High Fat Diet and Endurance Training in Rats. Journal of Biological Chemistry, v. 289, n. 49, p. 34129–34140, 25 out. 2014. XIONG, X.-Q. et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, v. 1852, n. 9, p. 1867–1875, set. 2015. XU, X. et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol., v. 300, n. 6, p. 1115-1125, 2011. XU, X. et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 300, n. 5, p. R1115–R1125, maio 2011. ŻEBROWSKA, E. et al. High Protein Diet Induces Oxidative Stress in Rat Cerebral Cortex and Hypothalamus. International Journal of Molecular Sciences, v. 20, n. 7, p. 1547, 28 mar. 2019. ZENG, Z. et al. Curcumin Improves TNBS-Induced Colitis in Rats by Inhibiting IL-27 Expression via the TLR4/NF-κB Signaling Pathway. Planta Medica, v. 79, n. 02, p. 102–109, 18 dez. 2012. ZHANG, Y. et al. Irisin Stimulates Browning of White Adipocytes Through Mitogen-Activated Protein Kinase p38 MAP Kinase and ERK MAP Kinase Signaling. Diabetes, v. 63, n. 2, p. 514–525, 22 out. 2013. ZHENG, S. et al. Irisin alleviates FFA induced β-cell insulin resistance and inflammatory response through activating PI3K/AKT/FOXO1 signaling pathway. Endocrine, 21 set. 2021. ZHU, H. et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduction and Targeted Therapy, v. 7, n. 1, 17 jan. 2022. ZHU, W. et al. Exercise-Induced Irisin Decreases Inflammation and Improves NAFLD by Competitive Binding with MD2. Cells, v. 10, n. 12, p. 3306–3306, 25 nov. 2021. | pt_BR |
dc.type.degree | Mestrado Acadêmico | pt_BR |
Aparece nas coleções: | Dissertação (PMPGCF) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Dissertação de Mestrado - Júlia - Versão final com ficha catalográfica 2024.pdf | 40,79 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.