Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/39074
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMeira, Taylan Cunha-
dc.date.accessioned2024-02-23T16:08:34Z-
dc.date.available2024-02-23T16:08:34Z-
dc.date.issued2023-12-13-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/39074-
dc.description.abstractIntroduction: Obesity is characterized as a chronic and complex condition, which contributes to negative impacts on human health. In its genesis, genetic, environmental, metabolic and behavioral factors act that can determine a reduction in quality of life, predisposing to metabolic and cardiovascular changes. Faced with this problem, physical exercise is an important strategy for reducing body adiposity and preventing cardiovascular disorders associated with obesity. Objective: To evaluate the impact of physical exercise on changes in the oxidative profile and cardiovascular morphofunctional parameters in an animal model of obesity induced by a high-calorie diet. Methods: We used 24 male Wistar rats weighing between 150 and 200g, whose study protocol was approved by the Ethics Committee on the Use of Animals (CEUA/IMS-UFBA) under opinion number 053/2017. Initially, the experimental animals were subjected to a normocaloric control diet (DC, n=10) or a hypercaloric diet (DH, n=14) to induce obesity for 8 weeks. After this period, the animals in the control diet group (CD) or the hypercaloric diet group (HD) were subdivided into 2 experimental groups each, which were trained on a motorized treadmill (DCT, n=5; DHT, n=7) or maintained sedentary (DCS, n=5; DHS, n=7) for 12 weeks. At the end of the experiment, the abdominal adipose tissue deposits were dissected, weighed and the ventricle and aorta were removed for histological analysis. Chest blood was collected for biochemical and hormonal analysis. The histological sections were stained with Hematoxylin-Eosin (HE) and Masson's Tricromion (TM) and analyzed by the computerized system (ImageJ). Results: The high-calorie diet resulted in an increase in food and caloric intake, body weight and adiposity and altered glucose tolerance. The training protocol applied reduced body weight, adiposity index and abdominal adipose tissues of animals submitted to the high-calorie diet. No significant changes were observed in fasting blood glucose, insulin, HOMA-IR, HOMA-and Quick. Systolic blood pressure increased in sedentary animals that consumed the high-calorie diet and was reduced by the physical training protocol by approximately 12%. CK/MB levels were reduced in trained animals compared to sedentary animals submitted to a high-calorie diet. Animals submitted to a high-calorie diet had larger areas in the thickness of the aortic tunica intima, consequently, these animals had smaller aortic lumens; while trained animals had smaller thicknesses and larger lumens. The areas of cardiomyocytes and capillarization demonstrated pathological cardiac adaptations in sedentary animals that consumed a high-calorie diet, while in trained animals’ physiological cardiac adaptations were noted with an increase in cardiomyocytes and neocapillarization. Sedentary animals submitted to a high-calorie diet showed larger areas with fibrosis while the training protocol reduced these areas. The training applied in this study increased catalase and GPX values, while lipid peroxidation was reduced in trained animals. Cardiac total nitrite levels were higher in the (DHS) group and in the trained groups regardless of diet. Conclusion: The training protocol determined an improvement in body adiposity, oxidative profile and cardiovascular morphofunctional parameters in the animal model of diet-induced obesity.pt_BR
dc.description.sponsorshipFABESBpt_BR
dc.languageporpt_BR
dc.publisherUNIVERSIDADE FEDERAL DA BAHIApt_BR
dc.subjectExercício Físico. Sistema cardiovascular. Dieta Hipercalóricapt_BR
dc.subject.otherPhysical Exercise. Cardiovascular system. Hypercaloric Dietpt_BR
dc.titleIMPACTO DO TREINAMENTO FÍSICO SOBRE ALTERAÇÕES NO PERFIL OXIDATIVO E PARÂMETROS MORFOFUNCIONAIS CARDIOVASCULARES EM UM MODELO ANIMAL DE OBESIDADE INDUZIDA POR DIETA HIPERCALÓRICApt_BR
dc.title.alternativeImpact of physical training on changes in the oxidative profile and cardiovascular morphofunctional parameters in an animal model of obesity induced by a hypercaloric diet.pt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCiências Fisiológicaspt_BR
dc.contributor.advisor1MAGALHÃES GUSMÃO, AMÉLIA CRISTINA-
dc.contributor.referee1MAGALHÃES GUSMÃO, AMÉLIA CRISTINA-
dc.contributor.referee2AUGUSTO DA SILVA, ROBSON AMARO-
dc.contributor.referee3LOURENÇO BITTENCOURT, GRAZIELLE PRATES-
dc.creator.Latteshttp://lattes.cnpq.br/9010491146059043pt_BR
dc.description.resumoIntrodução: A obesidade é caracterizada como uma condição crônica e complexa, que contribui para impactos negativos na saúde humana. Em sua gênese atuam fatores genéticos, ambientais, metabólicos e comportamentais que podem determinar redução na qualidade de vida, predispondo a alterações metabólicas e cardiovasculares. Diante dessa problemática, o exercício físico é uma importante estratégia para redução da adiposidade corporal e prevenção de distúrbios cardiovasculares associados à obesidade. Objetivo: Avaliar o impacto do treinamento físico nas alterações do perfil oxidativo e nos parâmetros morfofuncionais cardiovasculares em modelo animal de obesidade induzida por dieta hipercalórica. Métodos: Foram utilizados 24 ratos Wistar machos com peso entre 150 e 200g, cujo protocolo deste estudo foi aprovado pelo Comitê de Ética no Uso de Animais (CEUA/IMS-UFBA) sob parecer número 053/2017. Inicialmente, os animais experimentais foram submetidos a dieta controle normocalórica (DC, n=10) ou dieta hipercalórica (DH, n=14) para indução da obesidade durante 8 semanas. Após esse período, os animais do grupo dieta controle (DC) ou do grupo dieta hipercalórica (DH) foram subdivididos em 2 grupos experimentais cada, os quais foram treinados em esteira motorizada (DCT, n=5; DHT, n=7) ou mantidos sedentários (DCS, n=5; DHS, n=7) por 12 semanas. Ao final do experimento, os depósitos de tecido adiposo abdominal foram dissecados e pesados e o ventrículo e a aorta removidos para análise histológica e de estresse oxidativo. Sangue torácico coletado para análises bioquímicas e hormonais. Os cortes histológicos foram corados com Hematoxilina-Eosina (HE) e Tricrômio de Masson (TM) e analisados pelo sistema informatizado (ImageJ). Resultados: A dieta hipercalórica determinou aumento do consumo alimentar e calórico, do peso e da adiposidade corporal e alterou a tolerância a glicose. O protocolo de treinamento aplicado reduziu o peso corporal, índice de adiposidade e os tecidos adiposos abdominais dos animais submetidos à dieta hipercalórica. Não foram observadas alterações significativas sobre a glicemia de jejum, insulina, HOMA-IR, HOMA-e Quick. A pressão arterial sistólica aumentou nos animais sedentários que consumiram a dieta hipercalórica e foi reduzida pelo protocolo de treinamento físico aproximadamente em 12%. Os níveis de CK/MB foram reduzidos em animais treinados em comparação com animais sedentários submetidos a uma dieta hipercalórica. Os animais submetidos a dieta hipercalórica apresentaram maiores áreas na espessura da túnica íntima da aorta, consequentemente, esses animais tiveram menores lúmens aórticos; enquanto os animais treinados apresentaram menores espessuras e maiores lúmens. As áreas dos cardiomiócitos e a capilarização demonstraram adaptações cardíacas patológicas nos animais sedentários que consumiram dieta hipercalórica, enquanto nos animais treinados notou-se adaptações cardíacas fisiológicas com aumento de cardiomiócitos e de neocapilarização. Os animais sedentários submetidos a dieta hipercalórica apresentaram maiores áreas com fibrose enquanto protocolo de treinamento reduziu essas áreas. O treinamento aplicado neste estudo aumentou os valores de catalase e GPX; enquanto que a peroxidação lipídica foi reduzida nos animais treinados. Os níveis de nitritos totais cardíaco foram maiores no grupo (DHS) e nos grupos treinados independente da dieta. Conclusão: O protocolo de treinamento determinou melhora na adiposidade corporal, e parâmetros morfofuncionais e oxidativos cardiovasculares no modelo animal de obesidade induzida por dieta.pt_BR
dc.publisher.departmentInstituto Multidisciplinar em Saúde (IMS)pt_BR
dc.relation.referencesAEBI, H. Catalase in vitro Methods Enzymol, 1984. ALENCAR, et al. Relações entre a redução de estrogênio, obesidade e insuficiência cardíaca com fração de ejeção preservada. Arquivos Brasileiros de Cardiologia, v. 117, p. 1191- 1201, 2021. ALMEIDA, M. E. F. e SANTOS, V. S. Dieta de cafeteria com chocolate, amendoim e biscoito: eficácia na indução do excess de peso e da dislipidemia em ratos. Revista Saúde e Biologia, v. 10, n. 3, p. 15-24, 2015. ALVES, J. M. Efeitos do treinamento físico na adiposidade visceral, tecido adiposo marrom e parâmetros metabólicos de ratos Wistar alimentados com dieta hiperlipídica. (Dissertação de Mestrado) - Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos, p.95, 2020. ARAÚJO, N. F. et al. Obesidade induzida por dieta de cafeteria e suas implicações cardiovasculares em camundongos sobreviventes à sepse: o envolvimento de NOS, NO e COX. (Tese Doutorado) Programa de Pós-Graduação em Ciências Biológicas - Fisiologia e Farmacologia, Universidade Federal de Minas Gerais, p. 170, 2022. AZEVEDO et al. Efeitos da cronicidade da dieta hiperlipídica no remodelamento do tecido adiposo marrom. (Dissertação Mestrado) - Programa de Pós – Graduação em Biologia Humana experimental, da Universidade Estadual do Rio de Janeiro. p.82, 2021. BASILIO, P G. Análise da capacidade funcional, perfil metabólico e morfologia do miocárdio de ratos submetidos a dieta intermitente e exercício físico.(Dissertação Mestrado) - Programa de Pós-Graduação em Ciências Biológicas - Fisiologia e Farmacologia, Universidade Federal Mato Grosso, p.67, 2016. BELAFIORE, M et al. Expression pattern of angiogenic factors in healthy heart in response to physical exercise intensity. Frontiers in physiology, v. 10. 238-, 2019. CAO, S et al. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 diabetes. PLoS One, v. 7, n. 12, p. e51709, 2012. CAVALERA, M; WANG, J; FRANGOGIANNIS, N.G. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Translational Research, v. 164, n. 4, p. 323-335, 2014. ČOLAK, E; PAP, D. The role of oxidative stress in the development of obesity and obesityrelated metabolic disorders. Journal of Medical Biochemistry, v. 40, n. 1, p. 1, 2021. COQUEIRO, R. S. et al. Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. Clinical nutrition ESPEN, v. 29, p. 203-212, 2019. CUNHA M. J. et al. Physical exercise reverses glutamate uptake and oxidative stress effects of chronic homocysteine administration in the rat. Int J Dev I Neuroscience, v. 30, p. 69-74, 2012. CUNHA, F et al. Concurrent exercise circuit protocol performed in public fitness facilities meets the American College of Sports Medicine guidelines for energy cost and metabolic intensity among older adults in Rio de Janeiro City. Applied Physiology, Nutrition, and Metabolism, v. 44, n. 5, p. 477-484, 2019.42 DENHAM, et al. Telomere length maintenance and cardio-metabolic disease prevention through exercise training. Sports medicine, v. 46, n. 9, p. 1213-1237, 2016. DIAS, D. S. et al. Exercise training initiated at old stage of lifespan attenuates aging-and ovariectomy-induced cardiac and renal oxidative stress: role of baroreflex. Experimental gerontology, v. 124, p. 110635, 2019. DIAS, M. R. et al. Therapeutic or lifelong training effects on pancreatic morphological and functional parameters in an animal model of aging and obesity. Experimental Gerontology, v. 175, p. 112144, 2023. EFFTING, et al. Exercício Resistido Modula Parâmetros de Estresse Oxidativo e Conteúdo de TNF-α no Coração de Camundongos com Obesidade Induzida por Dieta. Arquivos Brasileiros de Cardiologia, v. 112, p. 545-552, 2019. ELMAS, Merve Acikel et al. Protective effects of exercise on heart and aorta in high-fat dietinduced obese rats. Tissue and Cell, v. 57, p. 57-65, 2019. EMAMI, Seyed Reza et al. Ameliorative effect of sixteen weeks endurance training on biochemical and oxidative damage in high fat diet induced obese rats. Indian Journal of Experimental Biology (IJEB), v. 61, n. 02, p. 107-115, 2023. FERNÁNDEZ-SÁNCHEZ, A et al. Inflammation, oxidative stress, and obesity. International journal of molecular sciences, v. 12, n. 5, p. 3117-3132, 2011. FERRUZZI, A. C. S. Contribuições de animais de laboratório no contexto da Covid-19: terapêuticas e vacinas. 2023. FLANDERS, K. C. et al. Transforming growth factor beta 1: histochemical localization with antibodies to different epitopes. Journal Cellular Biology, v. 108, p. 653-660, 1989. FOSSATI P.; PRENCIPE L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinic Chem, v. 28, p. 2077-80, 1982. FRANCKHAUSER, S. et al. Overexpression of Il6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice. Diabetologia, v. 51, n. 7, p. 1306, 2008. FRANCO, F. S. C, et al. Efeitos da suplementação de creatina e do treinamento de potência sobre a performance e a massa corporal magra de ratos. Rev Bras Med Esporte, v. 13, n. 5, p. 297-302, 2007. FREITAS, M.C; CESCHINI, F.L; RAMALLO, B.T. Resistência à insulina associado à obesidade: efeitos anti-inflamatórios do exercício físico. Revista Brasileira de Ciência e Movimento, v. 22, n. 3, p. 139-147, 2014. FRIEDEWALD, W. T.; LEVY, R. I.; FREDRICKSON, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem, v. 18, p. 499-502, 1972. FURUKAWA, S et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig 2004, 114:1752-1761. GARBER, C. E. et al. American College of Sports Medicine Position Stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise, v. 43, p. 1334-1359, 2011. 43 GELONEZE, B. et al. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome – Brazilian Metabolic Syndrome Study (BRAMS). Arquivos Brasileiros de Endocrinologia & Metabologia, v. 53, n. 2, p. 281-287, 2009. GHORBANZADEH, V. et al. Protective effect of crocin and voluntary exercise against oxidative stress in the heart of high-fat diet-induced type 2 diabetic rats. Physiology international, v. 103, n. 4, p. 459-468, 2016. GOLBIDI, S; BADRAN, M; LAHER, I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Experimental diabetes research, v. 2012, 2011. GREEN, Laura C. et al. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical biochemistry, v. 126, n. 1, p. 131-138, 1982. GREGOR, M.F.; HOTAMISLIGIL, G. S. Inflammatory mechanisms in obesity. Annual review of immunology, v. 29, p. 415-445, 2011. GUSTAFSON, B. Adipose tissue, inflammation and atherosclerosis. Journal of atherosclerosis and thrombosis, v. 17, n. 4, p. 332-341, 2010. GUTIÉRREZ-CUEVAS, et al., Molecular mechanisms of obesity-linked cardiac dysfunction: an up-date on current knowledge. Cells, v. 10, n. 3, p. 629, 2021. GUZIK, T. J. et al. Systemic regulation of vascular NAD (P) H oxidase activity and nox isoform expression in human arteries and veins. Arteriosclerosis, thrombosis, and vascular biology, v. 24, n. 9, p. 1614-1620, 2004. HEDLEY, A.A. et al. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. Jama, v. 291, n. 23, p. 2847-2850, 2004. HOLLANDER, J. et al. Superoxide dismutase gene expression in skeletal muscle: fiberspecific adaptation to endurance training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 277, n. 3, p. R856-R862, 1999. HOWARD, C. V.; REED, M. G. Unbiased stereology: three-dimensional measurement in microscopy. 2nd ed. Abingdon: Garland Science/BIOS Scientific Publishers, 2005, 277 p. https://doi.org/10.3389/fendo.2021.706978. HU, F. B. Obesity and mortality: watch your waist, not just your weight. Archives of internal medicine, v. 167, n. 9, p. 875-876, 2007. IGNARRO, L.J.; BALESTRIERI, M.L; NAPOLI, C. Nutrition, physical activity, and cardiovascular disease: an update. Cardiovascular research, v. 73, n. 2, p. 326-340, 2007. JACOBSEN, et al. Perfis cardíaco, metabólico e molecular de ratos sedentários no momento inicial da obesidade. Arquivos Brasileiros de Cardiologia, v. 109, p. 432-439, 2017. JAKICIC, J.M. et al. Role of physical activity and exercise in treating patients with overweight and obesity. Clinical chemistry, v. 64, n. 1, p. 99-107, 2018. JIMÉNEZ-GONZÁLEZ, et al. The crosstalk between cardiac lipotoxicity and mitochondrial oxidative stress in the cardiac alterations in diet-induced obesity in rats. Cells, v. 9, n. 2, p. 451, 2020. JUNQUEIRA, L. Cx˙ U.; BIGNOLAS, G.; BRENTANI, R. R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. The Histochemical journal, v. 11, n. 4, p. 447-455, 1979. 44 KAHAN, S; & Z, T. Obesity as a disease: current policies and implications for the future. Current obesity reports, v. 5, n. 2, p. 291-297, 2016. KAHN, C. Ronald et al. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. The Journal of clinical investigation, v. 129, n. 10, p. 3990-4000, 2019. KANASAKI, K; K, D. Biology of obesity: lessons from animal models of obesity. BioMed Research International, v. 2011, 2011. KATZ, A.; NAMBI, S. S.; MATHER, K.; BARON, A. D.; FOLLMAN, D. A.; SULLIVAN, G.; QUON, M. J. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. The Journal of Clinical Endocrinology & Metabolism, v. 85, n. 7, p. 2404-2410, 2000. KEATING, Shelley E. et al. A systematic review and meta‐analysis of interval training versus moderate‐intensity continuous training on body adiposity. Obesity reviews, v. 18, n. 8, p. 943-964, 2017. KERSHAW, E.E.; FLIER, J.S. Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology & Metabolism, v. 89, n. 6, p. 2548-2556, 2004. KOLIAKI, C et al. Obesidade e doenças cardiovasculares: revisitando uma antiga relação. Metabolismo, v. 98-107, 2019. KRAUSE, Mauricio et al. The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production. European journal of applied physiology, v. 114, p. 251-260, 2014.KWAK, H-B et al. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. The FASEB Journal, v. 25, n. 3, p. 1106-1117, 2011. LAGERROS, Y.T; RÖSSNER, S. Obesity management: what brings success. Therapeutic advances in gastroenterology, v. 6, n. 1, p. 77-88, 2013. LAI, Chao-Hung et al. Multi-strain probiotics inhibit cardiac myopathies and autophagy to prevent heart injury in high-fat diet-fed rats. International journal of medical sciences, v. 13, n. 4, p. 277, 2016. LAU, D.C. et al. Adipokines: molecular links between obesity and atheroslcerosis. American Journal of Physiology-Heart and Circulatory Physiology, 2005. LAURENS, C et al. Influence of Acute and Chronic Exercise on Abdominal Fat Lipolysis: An Update. Frontiers in Physiology, v 11, article 575363, 2020. LEE, R. et al. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Current medicinal chemistry, v. 19, n. 16, p. 2504-2520, 2012. LEOPOLDO, André Soares et al. Cardiac remodeling in a rat model of diet-induced obesity. Canadian Journal of Cardiology, v. 26, n. 8, p. 423-429, 2010. LIN, Xihua; LI, Hong. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Frontiers in Endocrinology, [s. l.], v. 12, n. September, p. 1–9, 2021. Disponível em: LUMENG, C. N.; B, J. L.; S, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of clinical investigation, v. 117, n. 1, p. 175-184, 2007. 45 LYON, C.J.; LAW, R.E.; HSUEH, W.A. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology, v. 144, n. 6, p. 2195-2200, 2003. MA, Yixuan et al. Exercise training alleviates cardiac fibrosis through increasing fibroblast growth factor 21 and regulating TGF-β1-Smad2/3-MMP2/9 signaling in mice with myocardial infarction. International Journal of Molecular Sciences, v. 22, n. 22, p. 12341, 2021. MACEDO, et al. Inflamação crônica decorrente da obesidade e comorbidades relacionadas. Estudos avançados sobre saúde e natureza, [s. L.], v. 1, 2021. Disponível em: https://www.periodicojs.com.br/index.php/easn/article/view/365. Acesso em: 14 set. 2022. MACHADO, M. V et al. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome. Experimental physiology, v. 102, n. 12, p. 1716-1728, 2017. MAINARDES, et al.,. Prevalência da obesidade e fatores associados na população brasileira. Research, Society and Development, v. 12, n. 2, p. e28312240176- e28312240176, 2023. MANDARIM-DE-LACERDA, C.A; FERNANDES-SANTOS, C; AGUILA, M.B. Image analysis and quantitative morphology. In: Histology Protocols. Humana Press, Totowa, NJ, 2010. p. 211-225. MANDVIWALA, T; K, U; D, A. Obesity and cardiovascular disease: a risk factor or a risk marker? Current atherosclerosis reports, v. 18, n. 5, p. 21, 2016. MARIAPPAN, N et al. NF-κB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovascular research, v. 85, n. 3, p. 473-483, 2009. MARTINS, F et al. Dieta hiperlipídica promove remodelação cardíaca em modelo experimental de obesidade. Arq Bras Cardiol, v. 105, n. 5, p. 479-486, 2015. MATHIEU, P et al. Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension, v. 53, n. 4, p. 577-584, 2009. MATTHEWS, D. R. et al. Homeostasis model assessment: insulin resistance and betacell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, v. 28, p. 412-419, 1985. MENDES, et al. Fatores de risco associados à obesidade e sobrepeso em cães. Medicina Veterinária (UFRPE), v. 17, n. 1, p. 11-26, 2023. MORRISON, Steven et al. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy. Journal of Diabetes and its Complications, v. 28, n. 5, p. 715-722, 2014. NASCIMENTO, O.V., ALMEIDA, S. C. Estresse oxidativo e sinalizadores inflamatórios como marcadores do quadro de obesidade: uma breve revisão narrativa. RECIMA21-Revista Científica Multidisciplinar-ISSN 2675-6218, v. 3, n. 8, p. e381746-e381746, 2022. NICOLETTI, R. A. Efeitos do exercício físico no controle vascular de ratos envelhecidos. (Dissertação Mestrado) - Programa de Pós-Graduação em Ciências do Movimento, Universidade Estadual Paulista, p.38, 2022. 46 NIELSEN, A. R et al. Expression of interleukin‐15 in human skeletal muscle–effect of exercise and muscle fibre type composition. The Journal of physiology, v. 584, n. 1, p. 305-312, 2007. NOVAIS, et al. Effect of aerobic exercise training on cGMP levels and blood pressure in treated hypertensive postmenopausal women. Motriz: Revista de Educação Física, v. 23, p. 1-6, 2017. OISHI, Jorge Camargo et al. Disfunção Endotelial e Inflamação Precedem a Elevação da Pressão Arterial Induzida por Dieta Hiperlipídica. Arquivos Brasileiros de Cardiologia, v. 110, p. 558-567, 2018. OLIVEIRA, A.G. et al. Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes, v. 60, n. 3, p. 784-796, 2011. OLIVEIRA, M. C de; S, J. P. F. Oxidative stress action in cellular aging. Brazilian Archives of Biology and Technology, v. 53, n. 6, p. 1333-1342, 2010. ORGANIZAÇÃO MUNDIAL DA SAÚDE. Obesidade e sobrepeso. Disponível em: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight. Acesso em: 18 mar. 2023. PACHER, Pal et al. The role of poly (ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes, v. 51, n. 2, p. 514-521, 2002. PAGLIA, D.E.; VALENTINE, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of laboratory and clinical medicine, v. 70, n. 1, p. 158-169, 1967. PANCHAL, Sunil K. et al. High-carbohydrate, high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats. Journal of cardiovascular pharmacology, v. 57, n. 5, p. 611-624, 2011. PECORARO, N. et al. Chronic Stress Promotes Palatable Feeding, which Reduces Signs of Stress: Feedforward and Feedback Effects of Chronic Stress. Endocrinology, v. 145, n. 8, p. 3754–3762, 2004. PEDERSEN, B. K. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays in biochemistry, v. 42, p. 105-117, 2006. PEDERSEN, B.K. Anti‐inflammatory effects of exercise: role in diabetes and cardiovascular disease. European journal of clinical investigation, v. 47, n. 8, p. 600-611, 2017. PEDERSEN, B.K. Exercise-induced myokines and their role in chronic diseases. Brain, behavior, and immunity, v. 25, n. 5, p. 811-816, 2011. PITTS, G. C; USHAKOV, A. S.; PACE, N.; SMITH, A. H.; RAHLMANN, D. F.; SMIRNOVA, T. A. Effects of weightlessness on body composition in the rat. Am J Physiol., v. 244, n. 3, 1983. PORET, et al., The prevalence of cardio-metabolic risk factors is differentially elevated in obesity-prone Osborne-Mendel and obesity-resistant S5B/Pl rats. Life sciences, v. 223, p. 95- 101, 2019. POWELL-WILEY et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation, v.143, e984–e1010, 2021. 47 POWELL-WILEY, T M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation, v. 143, n. 21, p. e984-e1010, 2021. RAT GENOME SEQUENCING PROJECT CONSORTIUM et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, v. 428, n. 6982, p. 493, 2004. REGINATO, G. S et al. Differential benefits of physical training associated or not with Larginine supplementation in rats with metabolic syndrome: evaluation of cardiovascular, autonomic and metabolic parameters. Physiology & Behavior, p. 114251, 2023. RODRÍGUEZ-HERNÁNDEZ, H et al. Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. International journal of endocrinology, v. 2013, 2013. ROSINI, T. C; DA S, A. S. R; DE M, C. Diet-induced obesity: rodent model for the study of obesity-related disorders. Revista da Associação Médica Brasileira (English Edition), v. 58, n. 3, p. 383-387, 2012. RUIZ-ORTEGA, M et al. TGF-β signaling in vascular fibrosis. Cardiovascular research, v. 74, n. 2, p. 196-206, 2007. RUSH, J.W.E; DENNIS, S.G.; GRAHAM, D.A. Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. Canadian journal of applied physiology, v. 30, n. 4, p. 442-474, 2005. SABAG, A; CHANG, D; JOHNSON, N. Growth Hormone as a Potential Mediator of Aerobic Exercise-Induced Reductions in Visceral Adipose Tissue. Frontiers in Physiology, v.12, article 623570, 2021 SALTIEL, A R.; OLEFSKY, J M. Inflammatory mechanisms linking obesity and metabolic disease. The Journal of clinical investigation, v. 127, n. 1, p. 1-4, 2017. SÁNCHEZ-CARRACEDO, D. El estigma de la obesidad y su impacto en la salud: una revisión narrativa. Endocrinología, Diabetes y Nutrición, v. 69, n. 10, p. 868-877, 2022. SANTOS, A. B. et al. Critérios para escolha da amostra em experimentos com ratos wistar. Revista da Sociedade Brasileira de Ciência em Animais de Laboratório, v. 1, n. 1, p. 121- 129, jan., 2012. SANTOS, W. Análise das respostas fisiológicas e metabólicas entre dois tipos de treinamento em ratos wistar. (Dissertação Mestrado) - Pós-Graduação em Educação Física da Universidade Federal de Sergipe, p. 50, 2019. SCHNYDER, S; HANDSCHIN, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone, v. 80, p. 115-125, 2015. SHIMIZU, I; INAMINO, T. Physiological and pathological cardiac hypertrophy, Journal of Molecular and Cellular Cardiology, v.97, p.245-262, 2016. SONTA, T et al. Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity. Free Radic Biol Med 2004, 37:115-115. 4. SPERETTA, G. F. F et al. The effects of exercise modalities on adiposity in obese rats. Clinics, v. 67, n. 12, p. 1469-1477, 2012. STEPHENS D. N. Does the Lee obesity index measure general obesity? Physiology & Bahavior, v. 25, p. 313-315, 1980.48 TASCANOV, M. B et al. Relationships between paroxysmal atrial fibrillation, total oxidant status, and DNA damage. Revista Portuguesa de Cardiologia, v. 40, n. 1, p. 5-10, 2021. TAVASSOLI, H; et al. The effects of resistance exercise training followed by de-training on irisin and some metabolic parameters in type 2 diabetic rat model. Archives of physiology and biochemistry, v. 128, n. 1, p. 240-247, 2022. TOBLLI, J. E. et al. Reduced cardiac expression of plasminogen activator inhibitor 1 and transforming growth factor β1 in obese Zucker rats by perindopril. Heart, v. 91, n. 1, p. 80-86, 2005. TRAVAIN, W et al. Efeito do óleo de coco sobre a morfologia da aorta de ratos obesos. Saúde e Pesquisa, v. 8, n. 1, p. 35-43, 2015. UNGER, R. H.; Z, Yan-Ting; O, L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proceedings of the National Academy of Sciences, v. 96, n. 5, p. 2327-2332, 1999. WALLACE, T. M.; LEVY, J. C.; MATTHEWS, D. R. Use and abuse of HOMA modeling. Diabetes Care, v. 27, n. 6, p. 1487-1495, 2004. WANG, H et al. Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1α and Akt activation. Cellular physiology and biochemistry, v. 35, n. 6, p. 2159-2168, 2015. WANG, J. et al. Effect of exercise training intensity on murine T‐regulatory cells and vaccination response. Scandinavian journal of medicine & science in sports, v. 22, n. 5, p. 643-652, 2012. WELLY, R. J. et al. Comparison of diet vs. exercise on metabolic function & gut microbiota in obese rats. Medicine and science in sports and exercise, v. 48, n. 9, p. 1688, 2016. WESTERMANN, D et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes, v. 56, n. 3, p. 641-646, 2007. WORLD HEALTH ORGANIZATION. Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/. 2018a. WULFSOHN, D.; NYENGAARD, J. R.; TANG, Y. Postnatal growth of cardiomyocytes in the left ventricle of the rat. The Anatomical Record Part A, v. 277A, p. 236–247, 2004. YAN, H et al. Effect of aerobic training on glucose control and blood pressure in T2DDM East African males. International Scholarly Research Notices, v. 2014, 2014. YUE, Y et al. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes research and clinical practice, v. 133, p. 124-130, 2017. ZANUSO, et al. Exercise for the management of type 2 diabetes: a review of the evidence. Acta diabetologica, v. 47, p. 15-22, 2010. ZANUSO, et al. Exercise in type 2 diabetes: genetic, metabolic and neuromuscular adaptations. A review of the evidence. British journal of sports medicine, v. 51, n. 21, p. 1533-1538, 2017.49 ZORNOFF, L.A.M et al. Cigarette smoke exposure intensifies ventricular remodeling process following myocardial infarction. Arquivos brasileiros de cardiologia, v. 86, n. 4, p. 276-282, 2006.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PMPGCF)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
MESTRADO VERSAO FINAL DIPLOMA.pdf2,13 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.