dc.relation.references | AEBI, H. Catalase in vitro Methods Enzymol, 1984.
ALENCAR, et al. Relações entre a redução de estrogênio, obesidade e insuficiência cardíaca
com fração de ejeção preservada. Arquivos Brasileiros de Cardiologia, v. 117, p. 1191-
1201, 2021.
ALMEIDA, M. E. F. e SANTOS, V. S. Dieta de cafeteria com chocolate, amendoim e
biscoito: eficácia na indução do excess de peso e da dislipidemia em ratos. Revista Saúde e
Biologia, v. 10, n. 3, p. 15-24, 2015.
ALVES, J. M. Efeitos do treinamento físico na adiposidade visceral, tecido adiposo
marrom e parâmetros metabólicos de ratos Wistar alimentados com dieta hiperlipídica.
(Dissertação de Mestrado) - Programa Interinstitucional de Pós-Graduação em Ciências
Fisiológicas, Universidade Federal de São Carlos, p.95, 2020.
ARAÚJO, N. F. et al. Obesidade induzida por dieta de cafeteria e suas implicações
cardiovasculares em camundongos sobreviventes à sepse: o envolvimento de NOS, NO e
COX. (Tese Doutorado) Programa de Pós-Graduação em Ciências Biológicas - Fisiologia e
Farmacologia, Universidade Federal de Minas Gerais, p. 170, 2022.
AZEVEDO et al. Efeitos da cronicidade da dieta hiperlipídica no remodelamento do
tecido adiposo marrom. (Dissertação Mestrado) - Programa de Pós – Graduação em
Biologia Humana experimental, da Universidade Estadual do Rio de Janeiro. p.82, 2021.
BASILIO, P G. Análise da capacidade funcional, perfil metabólico e morfologia do
miocárdio de ratos submetidos a dieta intermitente e exercício físico.(Dissertação
Mestrado) - Programa de Pós-Graduação em Ciências Biológicas - Fisiologia e Farmacologia,
Universidade Federal Mato Grosso, p.67, 2016.
BELAFIORE, M et al. Expression pattern of angiogenic factors in healthy heart in response to
physical exercise intensity. Frontiers in physiology, v. 10. 238-, 2019.
CAO, S et al. Effects of exercise on AMPK signaling and downstream components to
PI3K in rat with type 2 diabetes. PLoS One, v. 7, n. 12, p. e51709, 2012.
CAVALERA, M; WANG, J; FRANGOGIANNIS, N.G. Obesity, metabolic dysfunction, and
cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic
opportunities. Translational Research, v. 164, n. 4, p. 323-335, 2014.
ČOLAK, E; PAP, D. The role of oxidative stress in the development of obesity and obesityrelated
metabolic disorders. Journal of Medical Biochemistry, v. 40, n. 1, p. 1, 2021.
COQUEIRO, R. S. et al. Therapeutic and preventive effects of exercise on
cardiometabolic parameters in aging and obese rats. Clinical nutrition ESPEN, v. 29, p.
203-212, 2019.
CUNHA M. J. et al. Physical exercise reverses glutamate uptake and oxidative stress
effects of chronic homocysteine administration in the rat. Int J Dev I Neuroscience, v.
30, p. 69-74, 2012.
CUNHA, F et al. Concurrent exercise circuit protocol performed in public fitness facilities
meets the American College of Sports Medicine guidelines for energy cost and metabolic
intensity among older adults in Rio de Janeiro City. Applied Physiology, Nutrition, and
Metabolism, v. 44, n. 5, p. 477-484, 2019.42
DENHAM, et al. Telomere length maintenance and cardio-metabolic disease prevention
through exercise training. Sports medicine, v. 46, n. 9, p. 1213-1237, 2016.
DIAS, D. S. et al. Exercise training initiated at old stage of lifespan attenuates aging-and
ovariectomy-induced cardiac and renal oxidative stress: role of baroreflex. Experimental
gerontology, v. 124, p. 110635, 2019.
DIAS, M. R. et al. Therapeutic or lifelong training effects on pancreatic morphological and
functional parameters in an animal model of aging and obesity. Experimental Gerontology,
v. 175, p. 112144, 2023.
EFFTING, et al. Exercício Resistido Modula Parâmetros de Estresse Oxidativo e Conteúdo de
TNF-α no Coração de Camundongos com Obesidade Induzida por Dieta. Arquivos
Brasileiros de Cardiologia, v. 112, p. 545-552, 2019.
ELMAS, Merve Acikel et al. Protective effects of exercise on heart and aorta in high-fat dietinduced
obese rats. Tissue and Cell, v. 57, p. 57-65, 2019.
EMAMI, Seyed Reza et al. Ameliorative effect of sixteen weeks endurance training on
biochemical and oxidative damage in high fat diet induced obese rats. Indian Journal of
Experimental Biology (IJEB), v. 61, n. 02, p. 107-115, 2023.
FERNÁNDEZ-SÁNCHEZ, A et al. Inflammation, oxidative stress, and
obesity. International journal of molecular sciences, v. 12, n. 5, p. 3117-3132, 2011.
FERRUZZI, A. C. S. Contribuições de animais de laboratório no contexto da Covid-19:
terapêuticas e vacinas. 2023.
FLANDERS, K. C. et al. Transforming growth factor beta 1: histochemical localization
with antibodies to different epitopes. Journal Cellular Biology, v. 108, p. 653-660,
1989.
FOSSATI P.; PRENCIPE L. Serum triglycerides determined colorimetrically with an
enzyme that produces hydrogen peroxide. Clinic Chem, v. 28, p. 2077-80, 1982.
FRANCKHAUSER, S. et al. Overexpression of Il6 leads to hyperinsulinaemia, liver
inflammation and reduced body weight in mice. Diabetologia, v. 51, n. 7, p. 1306, 2008.
FRANCO, F. S. C, et al. Efeitos da suplementação de creatina e do treinamento de
potência sobre a performance e a massa corporal magra de ratos. Rev Bras Med
Esporte, v. 13, n. 5, p. 297-302, 2007.
FREITAS, M.C; CESCHINI, F.L; RAMALLO, B.T. Resistência à insulina associado à
obesidade: efeitos anti-inflamatórios do exercício físico. Revista Brasileira de Ciência e
Movimento, v. 22, n. 3, p. 139-147, 2014.
FRIEDEWALD, W. T.; LEVY, R. I.; FREDRICKSON, D. S. Estimation of the
concentration of low-density lipoprotein cholesterol in plasma, without use of the
preparative ultracentrifuge. Clin Chem, v. 18, p. 499-502, 1972.
FURUKAWA, S et al. Increased oxidative stress in obesity and its impact on metabolic
syndrome. J Clin Investig 2004, 114:1752-1761.
GARBER, C. E. et al. American College of Sports Medicine Position Stand. Quantity and
quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal,
and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise.
Medicine & Science in Sports & Exercise, v. 43, p. 1334-1359, 2011.
43
GELONEZE, B. et al. HOMA1-IR and HOMA2-IR indexes in identifying insulin
resistance and metabolic syndrome – Brazilian Metabolic Syndrome Study (BRAMS).
Arquivos Brasileiros de Endocrinologia & Metabologia, v. 53, n. 2, p. 281-287, 2009.
GHORBANZADEH, V. et al. Protective effect of crocin and voluntary exercise against
oxidative stress in the heart of high-fat diet-induced type 2 diabetic rats. Physiology
international, v. 103, n. 4, p. 459-468, 2016.
GOLBIDI, S; BADRAN, M; LAHER, I. Antioxidant and anti-inflammatory effects of
exercise in diabetic patients. Experimental diabetes research, v. 2012, 2011.
GREEN, Laura C. et al. Analysis of nitrate, nitrite, and [15N] nitrate in biological
fluids. Analytical biochemistry, v. 126, n. 1, p. 131-138, 1982.
GREGOR, M.F.; HOTAMISLIGIL, G. S. Inflammatory mechanisms in obesity. Annual
review of immunology, v. 29, p. 415-445, 2011.
GUSTAFSON, B. Adipose tissue, inflammation and atherosclerosis. Journal of
atherosclerosis and thrombosis, v. 17, n. 4, p. 332-341, 2010.
GUTIÉRREZ-CUEVAS, et al., Molecular mechanisms of obesity-linked cardiac dysfunction:
an up-date on current knowledge. Cells, v. 10, n. 3, p. 629, 2021.
GUZIK, T. J. et al. Systemic regulation of vascular NAD (P) H oxidase activity and nox
isoform expression in human arteries and veins. Arteriosclerosis, thrombosis, and vascular
biology, v. 24, n. 9, p. 1614-1620, 2004.
HEDLEY, A.A. et al. Prevalence of overweight and obesity among US children, adolescents,
and adults, 1999-2002. Jama, v. 291, n. 23, p. 2847-2850, 2004.
HOLLANDER, J. et al. Superoxide dismutase gene expression in skeletal muscle: fiberspecific
adaptation to endurance training. American Journal of Physiology-Regulatory,
Integrative and Comparative Physiology, v. 277, n. 3, p. R856-R862, 1999.
HOWARD, C. V.; REED, M. G. Unbiased stereology: three-dimensional measurement
in microscopy. 2nd ed. Abingdon: Garland Science/BIOS Scientific Publishers, 2005, 277
p. https://doi.org/10.3389/fendo.2021.706978.
HU, F. B. Obesity and mortality: watch your waist, not just your weight. Archives of internal
medicine, v. 167, n. 9, p. 875-876, 2007.
IGNARRO, L.J.; BALESTRIERI, M.L; NAPOLI, C. Nutrition, physical activity, and
cardiovascular disease: an update. Cardiovascular research, v. 73, n. 2, p. 326-340,
2007.
JACOBSEN, et al. Perfis cardíaco, metabólico e molecular de ratos sedentários no momento
inicial da obesidade. Arquivos Brasileiros de Cardiologia, v. 109, p. 432-439, 2017.
JAKICIC, J.M. et al. Role of physical activity and exercise in treating patients with
overweight and obesity. Clinical chemistry, v. 64, n. 1, p. 99-107, 2018.
JIMÉNEZ-GONZÁLEZ, et al. The crosstalk between cardiac lipotoxicity and mitochondrial
oxidative stress in the cardiac alterations in diet-induced obesity in rats. Cells, v. 9, n. 2, p.
451, 2020.
JUNQUEIRA, L. Cx˙ U.; BIGNOLAS, G.; BRENTANI, R. R. Picrosirius staining plus
polarization microscopy, a specific method for collagen detection in tissue sections. The
Histochemical journal, v. 11, n. 4, p. 447-455, 1979.
44
KAHAN, S; & Z, T. Obesity as a disease: current policies and implications for the
future. Current obesity reports, v. 5, n. 2, p. 291-297, 2016.
KAHN, C. Ronald et al. Altered adipose tissue and adipocyte function in the pathogenesis of
metabolic syndrome. The Journal of clinical investigation, v. 129, n. 10, p. 3990-4000,
2019.
KANASAKI, K; K, D. Biology of obesity: lessons from animal models of obesity. BioMed
Research International, v. 2011, 2011.
KATZ, A.; NAMBI, S. S.; MATHER, K.; BARON, A. D.; FOLLMAN, D. A.;
SULLIVAN, G.; QUON, M. J. Quantitative insulin sensitivity check index: a simple,
accurate method for assessing insulin sensitivity in humans. The Journal of Clinical
Endocrinology & Metabolism, v. 85, n. 7, p. 2404-2410, 2000.
KEATING, Shelley E. et al. A systematic review and meta‐analysis of interval training versus
moderate‐intensity continuous training on body adiposity. Obesity reviews, v. 18, n. 8, p.
943-964, 2017.
KERSHAW, E.E.; FLIER, J.S. Adipose tissue as an endocrine organ. The Journal of
Clinical Endocrinology & Metabolism, v. 89, n. 6, p. 2548-2556, 2004.
KOLIAKI, C et al. Obesidade e doenças cardiovasculares: revisitando uma antiga
relação. Metabolismo, v. 98-107, 2019.
KRAUSE, Mauricio et al. The effects of aerobic exercise training at two different intensities
in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and
nitric oxide production. European journal of applied physiology, v. 114, p. 251-260,
2014.KWAK, H-B et al. Exercise training reduces fibrosis and matrix metalloproteinase
dysregulation in the aging rat heart. The FASEB Journal, v. 25, n. 3, p. 1106-1117,
2011.
LAGERROS, Y.T; RÖSSNER, S. Obesity management: what brings success.
Therapeutic advances in gastroenterology, v. 6, n. 1, p. 77-88, 2013.
LAI, Chao-Hung et al. Multi-strain probiotics inhibit cardiac myopathies and autophagy to
prevent heart injury in high-fat diet-fed rats. International journal of medical sciences, v.
13, n. 4, p. 277, 2016.
LAU, D.C. et al. Adipokines: molecular links between obesity and atheroslcerosis. American
Journal of Physiology-Heart and Circulatory Physiology, 2005.
LAURENS, C et al. Influence of Acute and Chronic Exercise on Abdominal Fat Lipolysis:
An Update. Frontiers in Physiology, v 11, article 575363, 2020.
LEE, R. et al. Evaluating oxidative stress in human cardiovascular disease: methodological
aspects and considerations. Current medicinal chemistry, v. 19, n. 16, p. 2504-2520, 2012.
LEOPOLDO, André Soares et al. Cardiac remodeling in a rat model of diet-induced
obesity. Canadian Journal of Cardiology, v. 26, n. 8, p. 423-429, 2010.
LIN, Xihua; LI, Hong. Obesity: Epidemiology, Pathophysiology, and Therapeutics.
Frontiers in Endocrinology, [s. l.], v. 12, n. September, p. 1–9, 2021. Disponível em:
LUMENG, C. N.; B, J. L.; S, A. R. Obesity induces a phenotypic switch in adipose tissue
macrophage polarization. The Journal of clinical investigation, v. 117, n. 1, p. 175-184,
2007.
45
LYON, C.J.; LAW, R.E.; HSUEH, W.A. Minireview: adiposity, inflammation, and
atherogenesis. Endocrinology, v. 144, n. 6, p. 2195-2200, 2003.
MA, Yixuan et al. Exercise training alleviates cardiac fibrosis through increasing fibroblast
growth factor 21 and regulating TGF-β1-Smad2/3-MMP2/9 signaling in mice with
myocardial infarction. International Journal of Molecular Sciences, v. 22, n. 22, p. 12341,
2021.
MACEDO, et al. Inflamação crônica decorrente da obesidade e comorbidades relacionadas.
Estudos avançados sobre saúde e natureza, [s. L.], v. 1, 2021. Disponível em:
https://www.periodicojs.com.br/index.php/easn/article/view/365. Acesso em: 14 set. 2022.
MACHADO, M. V et al. Exercise training dose differentially alters muscle and heart capillary
density and metabolic functions in an obese rat with metabolic syndrome. Experimental
physiology, v. 102, n. 12, p. 1716-1728, 2017.
MAINARDES, et al.,. Prevalência da obesidade e fatores associados na população
brasileira. Research, Society and Development, v. 12, n. 2, p. e28312240176-
e28312240176, 2023.
MANDARIM-DE-LACERDA, C.A; FERNANDES-SANTOS, C; AGUILA, M.B. Image
analysis and quantitative morphology. In: Histology Protocols. Humana Press, Totowa,
NJ, 2010. p. 211-225.
MANDVIWALA, T; K, U; D, A. Obesity and cardiovascular disease: a risk factor or a risk
marker? Current atherosclerosis reports, v. 18, n. 5, p. 21, 2016.
MARIAPPAN, N et al. NF-κB-induced oxidative stress contributes to mitochondrial and
cardiac dysfunction in type II diabetes. Cardiovascular research, v. 85, n. 3, p. 473-483,
2009.
MARTINS, F et al. Dieta hiperlipídica promove remodelação cardíaca em modelo
experimental de obesidade. Arq Bras Cardiol, v. 105, n. 5, p. 479-486, 2015.
MATHIEU, P et al. Visceral obesity: the link among inflammation, hypertension, and
cardiovascular disease. Hypertension, v. 53, n. 4, p. 577-584, 2009.
MATTHEWS, D. R. et al. Homeostasis model assessment: insulin resistance and betacell
function from fasting plasma glucose and insulin concentrations in man.
Diabetologia, v. 28, p. 412-419, 1985.
MENDES, et al. Fatores de risco associados à obesidade e sobrepeso em cães. Medicina
Veterinária (UFRPE), v. 17, n. 1, p. 11-26, 2023.
MORRISON, Steven et al. Exercise improves gait, reaction time and postural stability in
older adults with type 2 diabetes and neuropathy. Journal of Diabetes and its
Complications, v. 28, n. 5, p. 715-722, 2014.
NASCIMENTO, O.V., ALMEIDA, S. C. Estresse oxidativo e sinalizadores inflamatórios
como marcadores do quadro de obesidade: uma breve revisão narrativa. RECIMA21-Revista
Científica Multidisciplinar-ISSN 2675-6218, v. 3, n. 8, p. e381746-e381746, 2022.
NICOLETTI, R. A. Efeitos do exercício físico no controle vascular de ratos envelhecidos.
(Dissertação Mestrado) - Programa de Pós-Graduação em Ciências do Movimento,
Universidade Estadual Paulista, p.38, 2022. 46
NIELSEN, A. R et al. Expression of interleukin‐15 in human skeletal muscle–effect of
exercise and muscle fibre type composition. The Journal of physiology, v. 584, n. 1, p.
305-312, 2007.
NOVAIS, et al. Effect of aerobic exercise training on cGMP levels and blood pressure in
treated hypertensive postmenopausal women. Motriz: Revista de Educação Física, v. 23, p.
1-6, 2017.
OISHI, Jorge Camargo et al. Disfunção Endotelial e Inflamação Precedem a Elevação da
Pressão Arterial Induzida por Dieta Hiperlipídica. Arquivos Brasileiros de Cardiologia, v.
110, p. 558-567, 2018.
OLIVEIRA, A.G. et al. Physical exercise reduces circulating lipopolysaccharide and
TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes, v. 60, n.
3, p. 784-796, 2011.
OLIVEIRA, M. C de; S, J. P. F. Oxidative stress action in cellular aging. Brazilian Archives
of Biology and Technology, v. 53, n. 6, p. 1333-1342, 2010.
ORGANIZAÇÃO MUNDIAL DA SAÚDE. Obesidade e sobrepeso. Disponível em:
https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight. Acesso em: 18
mar. 2023.
PACHER, Pal et al. The role of poly (ADP-ribose) polymerase activation in the
development of myocardial and endothelial dysfunction in diabetes. Diabetes, v. 51, n. 2,
p. 514-521, 2002.
PAGLIA, D.E.; VALENTINE, W.N. Studies on the quantitative and qualitative
characterization of erythrocyte glutathione peroxidase. The Journal of laboratory and
clinical medicine, v. 70, n. 1, p. 158-169, 1967.
PANCHAL, Sunil K. et al. High-carbohydrate, high-fat diet–induced metabolic syndrome and
cardiovascular remodeling in rats. Journal of cardiovascular pharmacology, v. 57, n. 5, p.
611-624, 2011.
PECORARO, N. et al. Chronic Stress Promotes Palatable Feeding, which Reduces Signs
of Stress: Feedforward and Feedback Effects of Chronic Stress. Endocrinology, v. 145,
n. 8, p. 3754–3762, 2004.
PEDERSEN, B. K. The anti-inflammatory effect of exercise: its role in diabetes and
cardiovascular disease control. Essays in biochemistry, v. 42, p. 105-117, 2006.
PEDERSEN, B.K. Anti‐inflammatory effects of exercise: role in diabetes and cardiovascular
disease. European journal of clinical investigation, v. 47, n. 8, p. 600-611, 2017.
PEDERSEN, B.K. Exercise-induced myokines and their role in chronic diseases. Brain,
behavior, and immunity, v. 25, n. 5, p. 811-816, 2011.
PITTS, G. C; USHAKOV, A. S.; PACE, N.; SMITH, A. H.; RAHLMANN, D. F.;
SMIRNOVA, T. A. Effects of weightlessness on body composition in the rat. Am J
Physiol., v. 244, n. 3, 1983.
PORET, et al., The prevalence of cardio-metabolic risk factors is differentially elevated in
obesity-prone Osborne-Mendel and obesity-resistant S5B/Pl rats. Life sciences, v. 223, p. 95-
101, 2019.
POWELL-WILEY et al. Obesity and Cardiovascular Disease: A Scientific Statement from the
American Heart Association. Circulation, v.143, e984–e1010, 2021. 47
POWELL-WILEY, T M. et al. Obesity and cardiovascular disease: a scientific statement from
the American Heart Association. Circulation, v. 143, n. 21, p. e984-e1010, 2021.
RAT GENOME SEQUENCING PROJECT CONSORTIUM et al. Genome sequence of the
Brown Norway rat yields insights into mammalian evolution. Nature, v. 428, n. 6982, p. 493,
2004.
REGINATO, G. S et al. Differential benefits of physical training associated or not with Larginine
supplementation in rats with metabolic syndrome: evaluation of cardiovascular,
autonomic and metabolic parameters. Physiology & Behavior, p. 114251, 2023.
RODRÍGUEZ-HERNÁNDEZ, H et al. Obesity and inflammation: epidemiology, risk factors,
and markers of inflammation. International journal of endocrinology, v. 2013, 2013.
ROSINI, T. C; DA S, A. S. R; DE M, C. Diet-induced obesity: rodent model for the study of
obesity-related disorders. Revista da Associação Médica Brasileira (English Edition), v.
58, n. 3, p. 383-387, 2012.
RUIZ-ORTEGA, M et al. TGF-β signaling in vascular fibrosis. Cardiovascular
research, v. 74, n. 2, p. 196-206, 2007.
RUSH, J.W.E; DENNIS, S.G.; GRAHAM, D.A. Vascular nitric oxide and oxidative
stress: determinants of endothelial adaptations to cardiovascular disease and to physical
activity. Canadian journal of applied physiology, v. 30, n. 4, p. 442-474, 2005.
SABAG, A; CHANG, D; JOHNSON, N. Growth Hormone as a Potential Mediator of
Aerobic Exercise-Induced Reductions in Visceral Adipose Tissue. Frontiers in
Physiology, v.12, article 623570, 2021
SALTIEL, A R.; OLEFSKY, J M. Inflammatory mechanisms linking obesity and
metabolic disease. The Journal of clinical investigation, v. 127, n. 1, p. 1-4, 2017.
SÁNCHEZ-CARRACEDO, D. El estigma de la obesidad y su impacto en la salud: una
revisión narrativa. Endocrinología, Diabetes y Nutrición, v. 69, n. 10, p. 868-877, 2022.
SANTOS, A. B. et al. Critérios para escolha da amostra em experimentos com ratos wistar.
Revista da Sociedade Brasileira de Ciência em Animais de Laboratório, v. 1, n. 1, p. 121-
129, jan., 2012.
SANTOS, W. Análise das respostas fisiológicas e metabólicas entre dois tipos de
treinamento em ratos wistar. (Dissertação Mestrado) - Pós-Graduação em Educação Física
da Universidade Federal de Sergipe, p. 50, 2019.
SCHNYDER, S; HANDSCHIN, C. Skeletal muscle as an endocrine organ: PGC-1α,
myokines and exercise. Bone, v. 80, p. 115-125, 2015.
SHIMIZU, I; INAMINO, T. Physiological and pathological cardiac hypertrophy,
Journal of Molecular and Cellular Cardiology, v.97, p.245-262, 2016.
SONTA, T et al. Evidence for contribution of vascular NAD(P)H oxidase to increased
oxidative stress in animal models of diabetes and obesity. Free Radic Biol Med 2004,
37:115-115. 4.
SPERETTA, G. F. F et al. The effects of exercise modalities on adiposity in obese
rats. Clinics, v. 67, n. 12, p. 1469-1477, 2012.
STEPHENS D. N. Does the Lee obesity index measure general obesity? Physiology &
Bahavior, v. 25, p. 313-315, 1980.48
TASCANOV, M. B et al. Relationships between paroxysmal atrial fibrillation, total oxidant
status, and DNA damage. Revista Portuguesa de Cardiologia, v. 40, n. 1, p. 5-10, 2021.
TAVASSOLI, H; et al. The effects of resistance exercise training followed by de-training on
irisin and some metabolic parameters in type 2 diabetic rat model. Archives of physiology
and biochemistry, v. 128, n. 1, p. 240-247, 2022.
TOBLLI, J. E. et al. Reduced cardiac expression of plasminogen activator inhibitor 1 and
transforming growth factor β1 in obese Zucker rats by perindopril. Heart, v. 91, n. 1, p.
80-86, 2005.
TRAVAIN, W et al. Efeito do óleo de coco sobre a morfologia da aorta de ratos
obesos. Saúde e Pesquisa, v. 8, n. 1, p. 35-43, 2015.
UNGER, R. H.; Z, Yan-Ting; O, L. Regulation of fatty acid homeostasis in cells: novel role
of leptin. Proceedings of the National Academy of Sciences, v. 96, n. 5, p. 2327-2332,
1999.
WALLACE, T. M.; LEVY, J. C.; MATTHEWS, D. R. Use and abuse of HOMA
modeling. Diabetes Care, v. 27, n. 6, p. 1487-1495, 2004.
WANG, H et al. Exercise prevents cardiac injury and improves mitochondrial biogenesis
in advanced diabetic cardiomyopathy with PGC-1α and Akt activation. Cellular
physiology and biochemistry, v. 35, n. 6, p. 2159-2168, 2015.
WANG, J. et al. Effect of exercise training intensity on murine T‐regulatory cells and
vaccination response. Scandinavian journal of medicine & science in sports, v. 22, n.
5, p. 643-652, 2012.
WELLY, R. J. et al. Comparison of diet vs. exercise on metabolic function & gut
microbiota in obese rats. Medicine and science in sports and exercise, v. 48, n. 9, p.
1688, 2016.
WESTERMANN, D et al. Contributions of inflammation and cardiac matrix
metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of
angiotensin type 1 receptor antagonism. Diabetes, v. 56, n. 3, p. 641-646, 2007.
WORLD HEALTH ORGANIZATION. Obesity and overweight.
http://www.who.int/mediacentre/factsheets/fs311/en/. 2018a.
WULFSOHN, D.; NYENGAARD, J. R.; TANG, Y. Postnatal growth of cardiomyocytes
in the left ventricle of the rat. The Anatomical Record Part A, v. 277A, p. 236–247,
2004.
YAN, H et al. Effect of aerobic training on glucose control and blood pressure in T2DDM
East African males. International Scholarly Research Notices, v. 2014, 2014.
YUE, Y et al. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces
diabetic cardiomyopathy. Diabetes research and clinical practice, v. 133, p. 124-130, 2017.
ZANUSO, et al. Exercise for the management of type 2 diabetes: a review of the
evidence. Acta diabetologica, v. 47, p. 15-22, 2010.
ZANUSO, et al. Exercise in type 2 diabetes: genetic, metabolic and neuromuscular
adaptations. A review of the evidence. British journal of sports medicine, v. 51, n. 21, p.
1533-1538, 2017.49
ZORNOFF, L.A.M et al. Cigarette smoke exposure intensifies ventricular remodeling
process following myocardial infarction. Arquivos brasileiros de cardiologia, v. 86, n.
4, p. 276-282, 2006. | pt_BR |