https://repositorio.ufba.br/handle/ri/39254
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Rosa, Bruna Souza | - |
dc.date.accessioned | 2024-04-04T18:09:59Z | - |
dc.date.available | 2024-04-02 | - |
dc.date.available | 2024-04-04T18:09:59Z | - |
dc.date.issued | 2024-02-08 | - |
dc.identifier.uri | https://repositorio.ufba.br/handle/ri/39254 | - |
dc.description.abstract | Safe, effective, and economically viable solutions are essential given the importance of reducing the environmental impact of cement production. The use of waste co-processing as an energy source as well as a raw material in the synthesis of Portland cement clinker has been used to reduce the demand for fossil fuels and natural raw materials in cement production. However, the incineration of these materials can result in increased levels of potentially toxic compounds (PTCs) in the kiln system, including highly volatile heavy metals such as lead, cadmium and others, which are of great environmental concern and can pose risks to human health. One of the gaps in the study of these CPTs is their quantification in anhydrous cement. The aim of this research is to propose a method for quantifying potentially toxic compounds in anhydrous cement by means of leaching tests. To this end, analytical techniques were applied to characterize samples of commercial Portland cement and cements produced in the laboratory, such as granulometry, Blaine test, XRF and XRD. Calorimetry tests were then carried out with different solutions to assess the stages of cement hydration during the leaching test. After defining the solution, the leaching tests were carried out. Finally, based on the results of the tests carried out, a specific method for quantifying CPTs for anhydrous cements was proposed. The results obtained through calorimetric analysis indicated that, although the same leaching solution was used for all the cements tested, variations were observed in the induction times and setting times associated with each type of cement. In relation to the use of the solution defined in the leaching test, the proposed method was able to analyse 11 metals. By contrasting the quantification results obtained according to the guidelines of NBR 10005 and TCLP 1311 with the results generated by the method used in this study, an improved quantitative precision was found after the methodological procedure was refined. | pt_BR |
dc.language | por | pt_BR |
dc.publisher | UNIVERSIDADE FEDERAL DA BAHIA | pt_BR |
dc.rights | Acesso Restrito/Embargado | pt_BR |
dc.subject | Compostos potencialmente tóxicos | pt_BR |
dc.subject | lixiviação | pt_BR |
dc.subject | coprocessamento. | pt_BR |
dc.subject.other | Potentially toxic compounds | pt_BR |
dc.subject.other | Leaching | pt_BR |
dc.subject.other | Coprocessing. | pt_BR |
dc.title | Avaliação de compostos potencialmente tóxicos em cimento anidro: proposta de método quantitativo por ensaios de lixiviação | pt_BR |
dc.title.alternative | Avaliação de compostos potencialmente tóxicos em cimento anidro: proposta de método quantitativo por ensaios de lixiviação Salvador | pt_BR |
dc.type | Dissertação | pt_BR |
dc.publisher.program | Programa de Pós-graduação em Engenharia Civil (PPEC) | pt_BR |
dc.publisher.initials | UFBA | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.subject.cnpq | CNPQ::ENGENHARIAS | pt_BR |
dc.contributor.advisor1 | Gonçalves., Jardel Pereira | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5363080225273626 | pt_BR |
dc.contributor.advisor-co1 | Kirchheim, Ana Paula | - |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/4014435019322019 | pt_BR |
dc.contributor.referee1 | Silva, Guilherme Jorge Brigolin | - |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/8755682183778618 | pt_BR |
dc.contributor.referee2 | Cabral, Elaine Christine de Magalhães | - |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/1624091546521389 | pt_BR |
dc.contributor.referee3 | Kirchheim, Ana Paula Kirchheim | - |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/4014435019322019 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/8681761766391522 | pt_BR |
dc.description.resumo | Soluções seguras, eficazes e economicamente viáveis são preponderantes diante da importância de reduzir os impactos ambientais da produção de cimento. O emprego de coprocessamento de resíduos como fonte de energia, bem como matéria-prima na síntese de clínquer de cimento Portland tem sido utilizado propondo a redução da demanda de combustível fóssil e matérias-primas naturais na produção do cimento. No entanto, a incineração desses materiais pode resultar no aumento dos níveis de compostos potencialmente tóxicos (CPTs) no sistema do forno, incluindo metais tóxicos altamente voláteis, como chumbo, cádmio e outros, que são de grande preocupação ambiental e podem apresentar riscos à saúde humana. Uma das lacunas em relação ao estudo desses CPTs é a sua quantificação no cimento anidro. Assim, o objetivo dessa pesquisa é propor um método de quantificação de compostos potencialmente tóxicos aplicado à cimento anidro por meio de ensaios de lixiviação. Para isso foram aplicadas técnicas analíticas para caracterizar amostras de cimento Portland comercial e cimentos produzidos em laboratório, como a granulometria, ensaio de Blaine, FRX e DRX. Posteriormente foram aplicados ensaios de calorimetria com diferentes soluções para avaliar estágios de hidratação do cimento durante a manipulação do ensaio de lixiviação. Após a definição da solução foram realizados os ensaios de lixiviação. Por fim, frente aos resultados dos testes realizados foi proposto um método de quantificação de CPTs específico para cimentos anidros. Os resultados obtidos por meio da análise calorimétrica indicaram que, embora tenha sido utilizada a mesma solução lixiviante em todos os cimentos testados, foram observadas variações nos tempos de indução, tempo de pega associados a cada tipo de cimento. Em relação a utilização da solução definida no ensaio de lixiviação, o método proposto evidenciou habilidade na análise de 11 metais. Ao contrastar os resultados de quantificação obtidos segundo as diretrizes da NBR 10005 e do TCLP 1311 com os resultados gerados pelo método empregado neste estudo, constatou-se uma precisão quantitativa aprimorada após o refinamento do procedimento metodológico. | pt_BR |
dc.publisher.department | Escola Politécnica | pt_BR |
dc.relation.references | ALBERT, B., Guy, B., Damidot, D. (2006). Water chemical potential: a key parameter to determine the thermodynamic stability of some cement phases in concrete? Cement and Concrete Research, 36(5), 783-790. AL-DHAMRI, H., Melghit, K. (2010). Use of alumina spent catalyst and RFCC wastes from petroleum refinery to substitute bauxite in the preparation of Portland clinker. Journal of Hazardous Materials, 179(1–3), 852–859. ANDRADE NETO, J. S. et al. (2022a). Hydration and interactions between pure and doped C3S and C3A in the presence of different calcium sulfates. Cement and Concrete Research, 159, 106893. ANDRADE NETO, J. S. et al. (2022c). The role of sodium and sulfate sources on the rheology and hydration of C3A polymorphs. Cement and Concrete Research, 151, 106639. ANDRADE, F. R. D. et al. (2003). Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker. Cement and Concrete Research, 33(1), 63-71. ARANDA*, M. A. G.; DE LA TORRE, A. G.; LEÓN-REINA, L. (2012). Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products. Reviews in Mineralogy and Geochemistry, 74(1), 169-209. ARFALA, Y. et al. (2018). Assessment of heavy metals released into the air from the cement kilns co-burning waste: Case of Oujda cement manufacturing (Northeast Morocco). Sustainable Environment Research, 28(6), 363-373. ASSARASSON, E.R. Rydberg. (1956). Hydrothermal reactions between calcium hydroxide and amorphous silica. J. Phys. Chem. 60, 397–404. ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND (ABCP). (2002). Boletim Técnico – Guia Básico de Utilização do Cimento Portland. ABCP, 27 p. Disponível em: http://www.abcp.org.br/conteudo/wp-content/uploads/2009/12/BT106_2003.pdf. Acesso em: Jul. de 2023. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). (2004a). ABNT NBR 10004: resíduos sólidos: classificação. Rio de Janeiro: ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). (2004b). ABNT NBR 10005: Lixiviação de Resíduos – procedimento. Rio de Janeiro: ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). (2004c). ABNT NBR 10006: Procedimento para obtenção de extrato solubilizado de resíduos sólidos. Rio de Janeiro: ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). (2004d). ABNT NBR 10007: Amostragem de resíduos. Rio de Janeiro: ABNT. ATHAR, M., & Vohora, S.B. (1995). Heavy metals and environment. In: Man and environment series (Ed: P.K Ray). Wiley Eastem Ltd. New Delthi. pp. 1-195. BARNES, P., Bensted, J. (2002). Structure and performance of cements. CRC Press. 153 BARTH, E.F.; PERCIN, P. Stabilization and Solidification of hazardous wastes -Pollution technology review. V. Park Ridge, Noyes Data, 1990. BEIYUAN, J., Tsang, D. C. W., Valix, M., Zhang, W., Yang, X., Ok, Y. S., Li, X. D. (2017). Selective dissolution followed by EDDS washing of an E-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. Chemosphere, 166, 489–496. BELATO, Mariana Natale. Análise da geração de poluentes na produção de cimento Portland com o coprocessamento de resíduos industriais. 2013. BELZILE, N., Chen, Y.W., Filella, M. (2002). Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth Sci. Rev. 57(1), 125–176. BENTLY, J. D., Jeffery, J. W., Taylor, H. F. W. (1952). Crystallographic research on the hydration of Portland cement. A first report on investigations in progress. Magazine of Concrete Research, 4(11), 49–54. BERARDI, R.; CIOFFI, R.; SANTORO, L. Matrix stability and leaching behaviour in ettringite-based stabilization systems doped with heavy metals. Waste Management, v. 17, n. 8, p. 535-540, 1998. BERNAL, J. D., Jeffery, J. W., Taylor, H. F. W. (1952). Crystallographic research on the hydration of Portland cement. A first report on investigations in progress. Magazine of Concrete Research, 4(11), 49–54. BERRY, E. E., MacDonald, L. P. (1975). Experimental burning of used automotive crankcase oil in a dry-process cement kiln. Journal of Hazardous Materials, 1(2), 137-156. BETIOLI, A. M. et al. (2009). Effect of HMEC on the consolidation of cement pastes: Isothermal calorimetry versus oscillatory rheometry. Cement and Concrete Research, 39(5), 440–445. BHATTY JI. Lea’s Chemistry of Cement and Concrete. [S. l.]:Butterworth-Heinemann, 2019. BHATTY, I. A., Miller, F. M. (2011). Cement clinker production: Assessment of energy savings and CO2 emissions mitigation. In Innovations in Portland Cement Manufacturing (pp. 161-187). Elsevier. BHATTY, J. I. (1995). Role of minor elements in cement manufacture and use. Bhoelan BS, Stevering CH, van der Boog ATJ, van der Heyden MAG (2014) Barium toxicity and the role of the potassium inward rectifier current. Clin Toxicol (Phila) 52(6):584–593. https:// doi. org/ 10. 3109/ 15563 650. 2014. 923903 BHOELAN, B.S., Stevering, C.H., van der Boog, A.T.J., van der Heyden, M.A.G. (2014). Barium toxicity and the role of the potassium inward rectifier current. Clin Toxicol (Phila) 52(6), 584–593. https://doi.org/10.3109/15563650.2014.923903. BOGUE, R. H. (1929). Calculation of the compounds in Portland cement. Industrial & Engineering Chemistry Analytical Edition, 1(4), 192–197. BONHOURE, I., Wieland, E., Scheidegger, A. M., Ochs, M., Kunz, D. (2003). EXAFS study of Sn(IV) immobilization by hardened cement paste and calcium silicate hydrates. Environmental Science and Technology, 37(10), 2184–2191. BREHM, F. A. KULAKOWSKI, M. P.; EVALDT, D. C.; MORAES, C. A. M.; 154 PAMPANELLI, A.B. Análise da estabilização por solidificação de lodo de fosfatização em matrizes de cimento Portland e de cerâmica vermelha para a utilização na construção civil. Ambiente Construído, Porto Alegre, v. 13, n. 2, p. 15-27, abr./jun. 2013. BULLARD, J. W. (2007). Approximate rate constants for nonideal diffusion and their application in a stochastic model. Journal of Physical Chemistry A, 111, 2084-2092. FRANÇOZO DA, Y. et al. (2021a). Potential of preparing cement clinker by adding the fluorine-containing sludge into raw meal. Journal of Hazardous Materials, 403, 123692. DA, Y. et al. (2021b). Utilizing titanium-containing pickling sludge to prepare raw meal for clinker production. Construction and Building Materials, 268, 121216. DE LA TORRE, A. G., Bruque, S., Aranda, M. A. G. (2001). Rietveld quantitative amorphous content analysis. Journal of Applied Crystallography, 34(2), 196-202. DE SENA COSTA, B. L. et al. (2017). Silica content influence on cement compressive strength in wells subjected to steam injection. Journal of Petroleum Science and Engineering, 158, 626-633. DELL’ORSO, M., Mangialardi, T., aolini, A.E., iga, L. (2012). Evaluation of the leachability of heavy metals from cement-based materials. Journal of Hazardous Materials, v. 227-228, p. 1-8. DEOLALKAR, S. B. (2016). Innovations in Portland cement manufacturing. CRC Press. DIAZ CASELLES, L. et al. (2021). Immobilization of molybdenum by alternative cementitious binders and synthetic C-S-H: An experimental and numerical study. Science of the Total Environment, 789. DILIBERTO, C., et al. (2018). A zero-waste process for the management of MSWI fly ashes: production of ordinary Portland cement. Environmental technology. DWECK, J.; PINTO, C.A.; BÜCHLER, P.M. Study of a brazilian spent catalyst as cement aggregate by thermal and mechanical analysis. J Journal of Thermal Analysis and Calorimetry, v. 92, n. 1, p. 121-127, 2008. EC – European Commission. (n.d.). “Directive 2000 76 EC of the European arliament and of the Council of 4 Decem er 2000 on the incineration of waste”. Disponível em: http://eurlex.europa.eu/LexUriServ/site/en/consleg/2000/L/02000L0076-20001228-en.pdf. Acesso em: 01 de Jul. de 2010. ENVIROTOOLS FACTSHEETS. Factsheets on Thallium. (available at http://www.envirotools.org/factsheets/contaminants/thallium.shtml); 2002. ES INOSA, D.C.R., Tenório, J.A.S. (2000). La oratory study of galvanic sludge’s influence on the clinkerization process. Resources, conservation and recycling, v. 31, n. 1, p. 71-82. FAMY, C., Scrivener, K. L., Crumbie, A. (2002). What causes the grey level of C-S-H in backscattered electron images? Cem. Concr. Res., 32(9), 1465–1471. FAN, C. et al. (2021). Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders. Waste Management, 131, 277–285. FARIA, E. F. (2004). Predição da exotermia da reação de hidratação do concreto 155 através de modelo termo-químico e modelo de dados. (Dissertação de Mestrado) Engenharia Civil, Universidade Federal do Rio de Janeiro, Rio de Janeiro. FRANÇOZO, M.O., et al. (2019). Influência do pH na liberação de íons metálicos em pastas cimentícias contendo finos com potencial adsortivo. FREEMAN HJ, Kim YS. Digestion and absorption of protein. Annu Rev Med. 1978;29:99–116. GARBOCZI, E. J., Bentz, D. P. (2001). The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model. Cem. Concr. Res., 31, 1501-1514. GLASSER FP, Marr J. Lea’s Chemistry of Cement and Concrete. [S. l.]:Butterworth-Heinemann, 2019. GOBBO, L. (2003). Os compostos do clínquer Portland: sua caracterização por difração de raios-X e quantificação por refinamento de Rietveld. (Dissertação de Mestrado). Instituto de Geociências (IGc) - Recursos Minerais e Hidrogeologia, Universidade de São Paulo, São Paulo. GOUGAR, M. L. D., Scheetz, B. E., Roy, D. M. (1996). Ettringite and CSH Portland cement phases for waste ion immobilization: a review. Waste Manag., 16(4), 295–303. GRAMBOW, B. et al. (2020). Retention and diffusion of radioactive and toxic species on cementitious systems: Main outcome of the CEBAMA project. Applied Geochemistry, 112. GTZ HOLCIM. “Guidelines on Co rocessing Waste Materials in Cement Production:The GTZ- Holcim u lic rivate artnership”. Holcim Group Support Ltd and Deutsche Gesellschaftfür Technische Zusammenarbeit (GTZ) GmbH, 2006. Disponível em:<http://www.coprocem.com/Guidelines/unterordner/guideline_coprocem_v0606.pdf/ view>. Acesso em: jul. de 2023. HALIM, C.E. et al. (2004). Implications of the structure of cementitious wastes containing Pb (II), Cd (II), As (V), and Cr (VI) on the leaching of metals. Cem. Concr. Res., 34, 1093–1102. HANEIN, T. et al. (2016). Production of belite calcium sulfoaluminate cement using sulfur as a fuel and as a source of clinker sulfur trioxide: pilot kiln trial. Adv. Cem. Res., 28(10), 643–653. HANEIN, T. et al. (2020). Thermodynamic data for cement clinkering. Cement and Concrete Research, 132, 106043. HERFORT, D. et al. (2010). The chemistry of Portland cement clinker. Adv Cem Res, 22(4), 187–94. HEWLETT, P.; LISKA, M. (Ed.). (2019). Lea's chemistry of cement and concrete. Butterworth-Heinemann. HEWLETT, P.; Liska, M.; Ramachandran, V. S. (2017). Handbook of carbon offset programs: Trading systems, funds, protocols and standards. Elsevier. HOLANDA. Lei de Proteção do Solo - Lista de valores de qualidade do solo e da água subterrânea. [s.l: s.n.]. HOLLAND, T.J.B.; POWELL, R. (2011). An improved and extended internally 156 consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol., 29(3), 333–383. HUA, S. et al. (2016). Atmospheric emission inventory of hazardous air pollutants from China's cement plants: temporal trends, spatial variation characteristics and scenario projections. Atmos Environ, 128, 1e9. IEA- AGÊNCIA INTERNACIONAL DE ENERGIA. (n.d.). CO2 emissions. Disponivel em: https://www.iea.org/energy-system/industry/cement. Acesso em: 25 julho de 2023. INNOCENZI, Valentina et al. Treatment of fluid catalytic cracking spent catalysts to recover lanthanum and cerium: Comparison between selective precipitation and solvent extraction. Journal of Industrial and Engineering Chemistry, v. 24, p. 92-97, 2015. ITRC – Interstate Technology & Regulatory Council. (2011). Development of Performance Specifications for Solidification/Stabilization. S/S-1. Washington, D.C.: Interstate Technology & Regulatory Council, Solidification/Stabilization Team. JANSEN, D. et al. (2011). A remastered external standard method applied to the quantification of early OPC hydration. Cement and Concrete Research, 41(6), 602–608. JIAN, S., et al. (2020). Potential utilization of copper tailings in the preparation of low heat cement clinker. Construction and Building Materials, v. 252, p. 119-130. JO, D., Leonardo, R.S., Cartledge, F.K., et al. (2016). Determinação do teor de gesso em cimentos Portland por termogravimetria. J Therm Anal Calorim, 123, 1053–1062. https://doi.org/10.1007/s10973-015-5078-y. JOCHEM, E. (2017). Solidification/stabilization. In Handbook of Environmental Chemistry (pp. 37-75). Springer. JUEL, I. et al. (2003). A thermodynamic model for predicting the stability of thaumasite. Cement & Concrete Composites, 25, 867-872. KALARUS, D., et al. (2019). The influence of the usage of secondary fuels for Portland clinker production on the emission value of heavy metals from cement and concrete. In: Journal of Physics: Conference Series. IOP Publishing, p. 012008. KARIM, Mohammad Razaul et al. Heavy metals leaching behaviour assessment of palm oil clinker. Sains Malaysiana, [s. l.], v. 47, n. 3, p. 523–530, 2018.4 KELLUM, John A. Determinants of blood pH in health and disease. Critical care, v. 4, p. 1-9, 2000. KHLIFI, Imad. Lea’s Chemistry of Cement and Concrete. [S. l.]:Butterworth-Heinemann, 2019. KIHARA, Y. (1999). Co-processamento de resíduos em fornos de cimento: tendências. Anais. KIM, J. H. et al. (2021). Utilization of recycled cement powder as a solidifying agent for radioactive waste immobilization. Construction and Building Materials, 289. KIRCHHEIM, A. P. et al. (2009). Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime. Journal of Materials Science, 44(8), 2038–2045. KREFTING ER, Frentzel K, Tessarek J, Hohling HJ. Strontium, a tracer to study the 157 transport of calcium in mineralizing tissues by electron probe microanalysis. Scanning Microsc. 1993;7: 203–207. Komarneni, S. et al. (1988). Reactions of some calcium silicates with metal cations. Cem. Concr. Res., 18,204–220. KOSAJAN, V. et al. (2021). Municipal solid waste (MSW) co-processing in cement kiln to relieve China’s Msw treatment capacity pressure. Resources, Conservation and Recycling, 167, 105384. KULIK, D. A. et al. (2013). GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences, 17(1), 1-24. KUMAR, S. S. et al. (2008). Impact of dust emission on plant vegetation in the vicinity of cement plant. Environ Eng Manag J, 7, 31e5. KUNDU, S.; Gupta, A.K. (2008). Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic. J. Hazard. Mater., 153, 434–443.G. Laforest, J. Duchesne, Immobilization of chromium (VI) evaluated by binding isotherms for ground granulated blast furnace slag and ordinary Portland cement, Cem. Concr. Res. 35 (no. 12) (2005) 2322–2332. LAMAS, W. Q. et al. (2013). Waste materials co-processing in cement industry: Ecological efficiency of waste reuse. Renewable and Sustainable Energy Reviews, 19, 200–207. LANGE, S. et al. (2020). Uptake and retention of molybdenum in cementitious systems. Applied Geochemistry, 119. Lea FM, Parker TW. Lea’s Chemistry of Cement and Concrete. [S. l.]:Butterworth-Heinemann, 2019. LI, X. D. et al. (2001). Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. Journal of Hazardous Materials, 82, 215–230. LIN, K. L. et al. (2017). Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker. Sustainable Environment Research, 27(5), 251–257. LIN, Y., et al. (2012). Utilization of municipal sewage sludge as additives for the production of eco-cement. Journal of hazardous materials, v. 213, p. 457-465. LIU, J. et al. (2023). Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing. Materials, 16(9), 3444. LOCHER, F. W. (2005). Cement: Principles of Production and Use Vbt Verlag Bau U. Technik. LOTHENBACH, B. et al. (2007). Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cem. Concr. Res., 37, 483–491. LOTHENBACH, B. et al. (2008). Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, 38(6), 848-860. LOTHENBACH, B. et al. (2019). Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cement and Concrete 158 Research, 115, 472-506. LOTHENBACH, B.; WINNEFELD, F. (2006). Thermodynamic modelling of the hydration of Portland cement. Cement and Concrete Research, 36(2), 209-226. LOTHENBACH, B.; ZAJAC, M. (2019). Application of thermodynamic modelling to hydrated cements. Cement and Concrete Research, 123, 105779. LV, D. et al. (2018). Effects of Co-processing sewage sludge in the cement kiln on PAHs, heavy metals emissions and the surrounding environment. International Journal of Environmental Research and Public Health, 15(4). LYNN, C.J., Dhir, R.K., Ghataora, G.S. (2018). Environmental impacts of sewage sludge ash in construction: Leaching assessment. Resources, Conservation and Recycling, v. 136, p. 306-314. I. ODLER. Hydration, Setting and Hardening of Portland Cement. In: P.C. HEWLETT (Ed.), Lea's Chemistry of Cement and Concrete, 4th Edition. Arnold Publishers, London, Great Britain, p. 241-297, 1998. L. OPOCZKY, et al. Chemical and environmental aspects of heavy metals in cement in connection with the use of wastes. 11th Int. Cong. on the Chemistry of Cement (ICCC) (11–16 May 2003) Durban, South Africa, 2003. M. OCHS, B. LOTHENBACH, E. GIFFAUT. Uptake of oxo-anions by cements through solid solution formation: experimental evidence and modeling. Radiochimica Acta, 90 (no.11), 639–646, 2002. MALVIYA, R., Chaudhary, R. (2006). Leaching behavior and immobilization of heavy metals in solidified/stabilized products. Journal of Hazardous Materials, v. B137, p. 207-217. MARINGOLO, V. (2001). Clínquer coprocessado: produto de tecnologia integrada para sustentabilidade e competitividade da indústria de cimento. Tese de Doutorado, Universidade de São Paulo. MARTY, N. C. M. et al. (2018). Thermodynamic and crystallographic model for anion uptake by hydrated calcium aluminate (AFm): An example of molybdenum. Scientific Reports, 8(1). MCBRIDE, B. J. et al. (2002). NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field. MCCALLUM, R.I. (2005). Occupational exposure to antimony compounds. Journal of Environmental Monitoring, v. 7, n. 12, p. 1245-1250 MCCAULEY, P., & Washington, I. (1983). Barium bioavailability as the chloride, sulfate, or carbonate salt in the rat. Drug and Chemical Toxicology, 6(2), 209–217. MCCOMB, Jacqueline Q. et al. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, a comparative study. Water, Air, & Soil Pollution, v. 225, p. 1-10, 2014. MEGAW, H. D.; Kelsey, C. H. (1956). Crystal structure of tobermorite. Nature, 177, 390-391. MENZEL, C. A. (1935). Studies of High-pressure Steam Curing of Tamped Hollow Concrete Block, vol. 7, 1935, pp. 51e64. 159 MOBASHER, N. et al. (2016). Gamma irradiation resistance of early age Ba(OH)2-Na2SO4-slag cementitious grouts. Journal of Nuclear Materials, 482, 266–277. MOLLAH, M. Y. A. et al. (1998). An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) characterization of the speciation of arsenic (V) in Portland cement type-V. Sci. Total Environ., 224, 57–68. MOULIN, I. (1999). Speciation du plomb, du Cuivre, du zinc, du chrome (III) et (VI) dans les hydrates de ciment, Marseille, Universite de Droit, d'Economie et des Sciences, Faculté des Sciences et Techniques de Saint Jerome (These). MUBARAK, H., Chai, L.Y., Mirza, N., et al., 2015. Antimony (Sb) - pollution and removal techniques - critical assessment of technologies. Toxicol. Environ. Chem. Rev. 97(10), 1296–1318 MUDD, G.M., Weaver, T.R. (2004). Environmental geochemistry of leachate from leached brown coal ash. J. Environ. Eng., 130, 1514–1526. https://doi.org/10.1061/(asce)0733-9372(2004)130:12(1514). NAVARRO, R., Guzman, J., Saucedo, I., Revilla, J., Guibal, E., 2007. Vanadium recovery from oilvfly ash by leaching, precipitation and solvent extraction processes. Waste Manag. 27, 425–438. https://doi.org/10.1016/j.wasman.2006.02.002. NEVILLE, A. (2011). Properties of Concrete. England: Pearson.NELSON E B 2006. Well Cementing (Elsevier) 25-235. O'BRIEN, T.J., Cerjak, S., Patierno, S.R. (2003). Complexities of chromium carcinogenesis: Role of cellular response, repair and recovery mechanisms. Mutat Res., 533, 2-26. OLIVEIRA, T. V. da S. Estudo de testes de lixiviação aplicados aos resíduos perigosos solidificados/estabilizados com cimento. 2002. Dissertação. (Mestrado em saneamento, meio ambiente e recursos hídricos) – Escola de Engenharia, Universidade Federal de Minas Gerais, Minas Gerais, 2002. Oskarsson A (2015) Chapter 29—barium. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals, 4th edn. Academic Press, San Diego, pp 625–634 V.R. OUHADI, R.N. YONG, M. DEIRANLOU. Enhancement of cement-based solidification/stabilization of a lead-contaminated smectite clay. Journal of Hazardous Materials, 403, 123969, 2021. C.K. PARK. Hydration and solidification of hazardous wastes containing heavy metals using modified cementitious materials. Cement and Concrete Research, 30, 429–435, 2000. D. STEPHAN, Chrom. Nickel und Zink in Klinker und Zement — Einbau. Eigenschaften und Auslaugung (Chromium. Nickel and Zinc in Clinker and Cement-binding. Properties and Leaching), University of Siegen, 1999 (PhD-Thesis). F.D. PATCHEN. Reactions and properties of silica-Portland cement mixtures cured at elevated temperatures. Soc. Petrol. Eng. J., 219, 281-287, 1960. G. QI, X. LEI, L. LI, C. YUAN, Y. SUN, J. CHEN, Y. WANG, J. HAO. Preparation and evaluation of a mesoporous calcium-silicate material (MCSM) from coal fly ash for removal of Co(II) from wastewater. Chemical Engineering Journal, 279, 777–787, 2015. 160 K.L. SCRIVENER, The effect of heat treatment of inner product C-S-H, Cem. Concr.Res. 22 (1992) 1224–1226. PARVIZI, R., Khaki, J.V., Moayed, M.H., Ardani, M.R. (2012). Hydrometallurgical extraction of vanadium from mechanically milled oil-fired fly ash: analytical process optimization by using Taguchi design method. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 43, 1269–1276. https://doi.org/10.1007/s11663-012-9709-4. PECCHIO, Marcelo. A influência de fósforo, enxofre e estrôncio na mineralogia do clínquer Portland. Dissertação de Mestrado, Programa de Pós Graduação em Mineralogia e Petrologia. São Paulo, 2013. PINTO, C.A. et al. Evaluation of S/S process of tannery waste in cement by structural and mechanical analysis. Mat. Sci. Forum. V.660-661, p. 1130-1136, 2010. POLETTINI, A.; POMI, R. Modeling heavy metal and anion effects on physical and mechanical properties of Portland cement by means of factorial experiments. Environ. Technol., v.24, p. 231-239, 2003. POON, C. S.; QIAO, X. C.; LIN, Z. S. Effects of flue gas desulphurization sludge on the pozzolanic reaction of reject-fly-ash-blended cement pastes. Cement and concrete research, v. 34, n. 10, p. 1907-1918, 2004. R.P. PEPPLER. The system of lime, silica and water at 180 °C. Journal of Research of the National Bureau of Standards, 54, 205–211, 1955. RACT, P.G., Espinosa, D.C.R., Tenório, J.A.S. (2003). Determination of Cu and Ni incorporation ratios in Portland cement clinker. Waste Management, v. 23, n. 3, p. 281-285. ROCHA, Sônia Denise Ferreira; DE FREITAS CUNHA LINS, Vanessa; DO ESPÍRITO SANTO, Belinazir Costa. Aspects of waste co-processing in clinker kilns. Engenharia Sanitaria e Ambiental, [s. l.], v. 16, n. 1, p. 1–10, 2011. S. PAPAMARKOU, et al. Vitrified medical wastes bottom ash in cement clinkerization. Microstructural, hydration and leaching characteristics. Science of the Total Environment, 635, 705–715, 2018. F.N. STAFFORDA, M.D. Viquez, J. Labrincha, D. Hotz. Advances and challenges for the co-processing in Latin American cement industry. Proced. Mater. Sci., 9 (2015), pp. 571-577 SAIKIA, N.; KATO, S.; KOJIMA, T. Influence of Sn on the hydration of tricalcium aluminate, Ca 3Al 2O 6. Journal of Thermal Analysis and Calorimetry, [s. l.], v. 109, n.1, p. 273–286, 2012. SANTOS, Marilin Mariano dos. O co-processamento de resíduos industriais em fornos de clinquer: avaliaçäo das emissöes atmosféricas. 2003. SARNAT JA, Marmur A, Klein M, Kim E, Russell AG, Mulholland JA, et al. Associations between source-resolved particulate matter and cardiorespiratory emergency department visits. Epidemiology 2006;17:S267e8. SARTORE, L.; DEY, K. Preparation and Heavy Metal Ions Chelating Properties of Multifunctional Polymer-Grafted Silica Hybrid Materials. Advances in Materials Science and Engineering, [s. l.], v. 2019, 2019. SATO, Paulo Eduardo Solak. Distribuição de elementos menores no processo de fabricação de clínquer portland. 2004. Tese de Doutorado. Universidade de São 161 Paulo. SCHNEIDER, M., et al. (2023). The cement plant of tomorrow. Cement and Concrete Research, v. 173, p. 107290. SCRIVENER, K. L.; JUÍLLAND, P.; MONTEIRO, P. J. M. Advances in understanding hydration of Portland cement. Cement and concrete Research, 78 (2015), p. 36 – 56. SCRIVENER, K. L.; NONAT, A. Hydration of cementitious materials, present and future. Cement and Concrete Research 41 (2011) 651–665. SEHAM, N., Nagib, I., Inoue, K. (2000). Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy, 56, 269–292. https://doi.org/10.1016/S0304-386X(00)00073-6. SHAME EG, Glasser FP. Lea’s Chemistry of Cement and Concrete. [S. l.]:Butterworth-Heinemann, 2019. SHIH, P.-H., et al. (2005). Reuse of heavy metal-containing sludges in cement production. Cement and Concrete Research, v. 35, n. 11, p. 2110-2115. SKOOG, D.A.; HOLLER F.J.; NIEMAN, T.A. Princípios de análise instrumental. 5ed. São Paulo: Bookman. p. 836. 2002. SIMÃO, L. et al. Waste-containing clinkers: Valorization of alternative mineral sources from pulp and paper mills. Process Safety and Environmental Protection, [s. l.], v. 109, p. 106–116, 2017. SNIC – Sindicato Nacional da Indústria do Cimento. Press Kit 2021. [S.l.]: SNIC, 2021. Disponível em: <http://www.snic.org.br/>. Acesso em: 6 de Julho, 2023. SOBIK-SZOŁTYSEK, Jolanta; WYSTALSKA, Katarzyna. Coprocessing of sewage sludge in cement kiln. Em: INDUSTRIAL AND MUNICIPAL SLUDGE: EMERGING CONCERNS AND SCOPE FOR RESOURCE RECOVERY. [S. l.]: Elsevier, 2019. p. 361–381. E-book. Disponível em: Acesso em: 25 maio 2023. SOUZA P, Soares R, Anjos M, Freitas J, Martinelli A, Melo D 2012 Brazilian J. Pet. Gas.,6 105– 113. SOUZA, H. M. et al. Prediction of the clinker industrial composition using minimization of Gibbs free energy. Cerâmica, v. 61, n. 357, p. 23-30, 2015. STOEWSAND, G., Anderson, J., Rutzke, M., & Lisk, D. (1988). Deposition of barium in the skeleton of rats fed Brazil nuts. Nutrition Reports International, 38(2), 259–262. SUN, Y.; Zhao, Y.L.; Wan, X.J.; Qiu, J.P.;Wu, P.Q.; Sun, X.J. Stabilization/solidification of lead- and cadmium-containing tailings for cemented paste backfill by using clinker-free binders. Constr. Build. Mater. 2022, 359, 129469. V.S. RAMACHANDRAN, J.J. BEAUDOIN. Handbook of analytical techniques in concrete science and technology. Principles, Techniques, and Applications. Norwich, New York, U.S.A.: NOYES PUBLICATIONS - WILLIAM ANDREW PUBLISHING, LLC, 1999. C.D. SAUNDERS, W.A. Walker, Strength of Oil Well Cements and Additives under High Temperature Well Conditions, 1954, pp. 1e3. Paper presented at AIME Petroleum Branch Meeting in San Antonio, Texas, AIME 390-G. G.J. VERBECK, R.A. Helmuth, Structures and physical properties of cement pastes, 162 Proceedings of the 5th International Symposium on the Chemistry of Cement,Tokyo, 1968, pp. 1–32. H.F.W. TAYLOR, Hydrothermal reactions in the system CaO–SiO2 –H2O and the steam curing of cement–silica products, Proc. 4th Intl. Symp. Chem of Cement, vol. 1, U.S. National Bureau Standards, Washington, DC, 1960, pp. 176– 232. H.F.W.TAYLOR,J.Chem.Soc.(1950)3682–3690. K. van BREUGEL. Numerical simulation of hydration and microstructural development in hardening cement paste (II): applications.Cem. Concr. Res., 25 (1995), pp. 522-530. TAYLOR, H.F.W., 1990. Cement Chemistry, first ed. Thomas Telford, London. TAYLOR, Harry FW. Cement chemistry. Thomas Telford, 1997. THOMAS, Jeffrey J. et al. Modeling and simulation of cement hydration kinetics and microstructure development. Cement and concrete research, v. 41, n. 12, p. 1257-1278, 2011. TREZZA, M.A., Scian, A.N. (2007). Waste with chrome in Portland cement clinker production. J. Hazard. Mater., 147, 188-196. TSAI, S.L., Tsai, M.S. (1998). A study of the extraction of vanadium and nickel in oil-fired fly ash. Resour. Conserv. Recycl., 22, 163–176. https://doi.org/ U.S. EPA. METHOD 1311 - TOXICITY CHARACTERISTIC LEACHING PROCEDURE. [s.l: s.n.]. Disponível em: <https://www.epa.gov/sites/default/files/2015-12/documents/1311.pdf>. Acesso em: 1 jul. 2023. U.S. EPA. National Recommended Water Quality Criteria. Washington,. Disponível em: <www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table> US EPA. (2007). Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Method 1313: Liquid-Solid Partitioning as a Function of Extract pH Using a Parallel Batch Extraction Procedure. United States Environmental Protection Agency. USEPA, 1979. Toxics Release Inventory. Doc. 745-R-00-007Washington. USEPA, DC, USA. UTTON, C. A.; GALLUCCI, E.; HILL, J.; MILESTONE, N. B. Interaction between BaCO3 and OPC/BFS composite cements at 20 °c and 60 °c. Cement and Concrete Research, [s. l.], v. 41, n. 3, p. 236–243, 2011. UNGUREANU, G., Santos, S., Boaventura, R., et al., 2015. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 151, 326–342. H.A. VAN DER SLOOT. Characterization of the leaching behavior of concrete mortars and of cement–stabilized wastes with different waste loading for long term environmental assessment . Waste Manag., 22 (2) (2002), pp. 181-186 VALLS, S.; VASQUEZ, E. Leaching properties of stabilized/solidifies cement-admixtures-sewage sludges systems. Waste Management. v. 22. p. 37-45, 2002. VESPA, M.R.; DAHN, R.; GROLIMUND, D.; HARFOUCHE, M.; WIELAND, E.; 163 SCHEIDEGGER, A.M. Speciation of heavy metals in cement-stabilized waste forms: A micro-spectroscopic study. J. Geochem. Explor., v.88, p. 77-80, 2006. VOLLPRACHT, A., Schulte, R., Windt, M., Pade, C., & Krellner, C. (2016). Magnetic properties of uranium nitride UN with an itinerant electron metamagnetic transition. Physical Review B, 93(8), 085117. VON ZEMENT, Dekarbonisierung. Beton–Minderungspfade und Handlungsstrategien. Eine CO2-Roadmap für die deutsche Zementindustrie, Verein Deutscher Zementwerke eV, Düsseldorf, 2020. YAHAYA, Y., Jun, Z., Duan, P., Zhu, S., Yun, C., 2018. Effects of pH dynamics on solidification/ stabilization of municipal solid waste incineration fly ash. J. Environ. Manag. 207, 243–248. https://doi.org/10.1016/j.jenvman.2017.11.042. WALENTA G, Fu¨ llmann T, Westphal T et al. (2002) Process and Apparatus for X-ray Diffraction Characterization of a Material with Amorphous Phase. Global Patent index EP1260812A1. WANG, H.R.; Zhu, Z.D.; Pu, S.Y.; Song, W.L. Solidification/Stabilization of Pb2+ and Cd2+ contaminated soil using fly ash and GGBS based geopolymer. Arab. J. Sci. Eng. 2022, 47, 4385–4400. WANG, Lei et al. Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test. Resources, Conservation and Recycling, v. 54, n. 12, p. 1428-1435, 2010. WU, Kai et al. Preparation of alinite cement from municipal solid waste incineration fly ash. Cement and Concrete Composites, v. 34, n. 3, p. 322-327, 2012. Wu, F.C., Fu, Z.Y., Liu, B.J., et al., 2011. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area. Sci.Total Environ. 409 (18), 3344–3351. ZHANG, Zé et al. Solidificação/estabilização e avaliação de risco de metais pesados em cinzas volantes de incineração de resíduos sólidos urbanos: Uma revisão. Ciência do Meio Ambiente Total , p. 164451, 2023. | pt_BR |
dc.type.degree | Mestrado Acadêmico | pt_BR |
Aparece nas coleções: | Dissertação (PPEC) |
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO FINAL-BRUNAROSA.pdf Until 2025-05-22 | 5,15 MB | Adobe PDF | Visualizar/Abrir Solicitar uma cópia |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.