Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/39279
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Gabriela Oliveira Mota da-
dc.date.accessioned2024-04-17T19:36:39Z-
dc.date.available2024-04-17-
dc.date.available2024-04-17T19:36:39Z-
dc.date.issued2023-09-28-
dc.identifier.citationSILVA, Gabriela Oliveira Mota da. Exploiting lod-based Ssmilarity personalization strategies for recommender systems. 2023. 99 f. Tese (Doutorado em Ciência da Computação) Instituto de Computação, Universidade Federal da Bahia, Salvador, BA, 2023.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/39279-
dc.description.abstractLinked Open Data (LOD) is a cloud of freely accessible and interconnected datasets encompass machine-readable data. These data are available under open Semantic Web standards, such as Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL). One notable example of a LOD set is DBpedia, a crowd-sourced community effort to extract structured information from Wikipedia and make this information openly available on the Web. The semantic content of LOD and the advanced features of SPARQL has opened unprecedented opportunities for enabling semantic-aware applications. LOD-based Recommender Systems Recommender Systems usually leverage the data available within LOD datasets such as DBpedia to recommend items such as movies, places, books, and music to end-users. These systems use a semantic similarity algorithm that calculates the degree of matching between pairs of resources in the RDF graph, by counting the number of direct and indirect links between them, the length of the path between them, or the hierarchy of classes. Conversely, calculating similarity in RDF graphs could be difficult because each resource can have hundreds of links to other nodes. Not all of them are semantically relevant or can be applied to all resources in the graph. This can lead to the well-known matrix sparsity problem. Nevertheless, some effort has been made to select subsets of features, i.e., links, which are more helpful to computing similarity between items of a graph dataset, reducing the matrix dimension. Despite several studies in this field, there is still a lack of solutions applied to the personalization of feature selection tasks. In this context, we propose personalized strategies to improve semantic similarity precision in LOD-based Recommender Systems, including i) applying a feature selection approach to filter the best features for a particular user; ii) personalizing the RDF graph by adding weights to the edges, according to the user’s previous preferences; and iii) exploiting the similarity of literal properties as well as the links from the user model. The evaluation experiments used combined data from DBpedia and MovieLens and DBpedia and LastFM datasets. Results indicate significant increases in top-n recommendation tasks in Precision@K (K=5, 10), Map, and NDCG over non-personalized baseline similarities methods such as Linked Data Semantic Distance (LDSD) and Resource Similarity (ReSim). The results show that the strategies proposed in this work can be effective in improving semantic recommendation systems in various knowledge domains, as the solution is scalable to any LOD-based databases.pt_BR
dc.description.sponsorshipFundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectSistemas de recomendaçãopt_BR
dc.subjectDados abertos conectadospt_BR
dc.subjectSimilaridade semânticapt_BR
dc.subjectPersonalizaçãopt_BR
dc.subjectSeleção de característicaspt_BR
dc.subject.otherRecommender systemspt_BR
dc.subject.otherLinked open datapt_BR
dc.subject.otherSemantic similaritypt_BR
dc.subject.otherPersonalizationpt_BR
dc.subject.otherFeature selectionpt_BR
dc.titleExploiting lod-based similarity personalization strategies for recommender systemspt_BR
dc.title.alternativeExplorando estratégias de personalização de similaridade baseadas em lod para sistemas de recomendaçãopt_BR
dc.typeTesept_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência da Computação (PGCOMP) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOpt_BR
dc.contributor.advisor1Durão, Frederico Araújo-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6271096128174325pt_BR
dc.contributor.referee1Durão, Frederico Araújo-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6271096128174325pt_BR
dc.contributor.referee2Lino, Natasha Correia Queiroz-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7853125713114677pt_BR
dc.contributor.referee3Oliveira Neto, Rosalvo Ferreira de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9548186939653024pt_BR
dc.contributor.referee4Claro, Daniela Barreiro-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/9217378047217370pt_BR
dc.contributor.referee5Salvador, Laís do Nascimento-
dc.contributor.referee5Latteshttps://lattes.cnpq.br/1972531466861737pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/0571527285405113pt_BR
dc.description.resumoDados Abertos Conectados (Linked Open Data - LOD, em Inglês) é uma nuvem de bancos de dados interconectados, de livre acesso e legíveis por máquina, pois estão disponíveis em padrões abertos da Web Semântica, como RDF e SPARQL. Um exemplo relevante de banco LOD é a DBpedia, uma iniciativa comunitária para extrair informações estruturadas da Wikipedia e disponibilizá-las abertamente na Web. O conteúdo semântico disponibilizado pelos dados abertos conectados e os recursos avançados da linguagem SPARQL permitiram o desenvolvimento de aplicativos sensíveis à semântica. Os sistemas de recomendação (em Inglês: Recommender Systems - RS) baseados em LOD geralmente aproveitam os dados de bancos LOD, e.g. DBpedia, para recomendar itens como filmes, lugares, livros e músicas aos usuários finais. Esses sistemas usam um algoritmo de similaridade semântica que calcula o grau de correspondência entre pares de recursos do grafo RDF, contando o número de links diretos e indiretos entre eles, o comprimento do caminho entre eles ou analisando a hierarquia de suas classes. Por outro lado, calcular a similaridade em grafos RDF pode ser difícil porque cada recurso pode ter centenas de links para outros nós e nem todos eles são semanticamente relevantes ou podem ser aplicados a todos os recursos do grafo. Isso pode levar ao conhecido problema de esparsidade da matriz. No entanto, é possível selecionar subconjuntos de características que são mais úteis para calcular a semelhança entre itens de um grafo, reduzindo a dimensão da matriz. Apesar de vários estudos nesse campo, ainda faltam soluções aplicadas à personalização da etapa de seleção de características (Feature Selection - FS, em Inglês). Nesse contexto, propomos estratégias personalizadas para melhorar a precisão da similaridade semântica em sistemas de recomendação baseados em LOD, incluindo i) a aplicação de uma abordagem de seleção de características para filtrar as melhores propriedades para um usuário específico; ii) a personalização do grafo RDF adicionando pesos às arestas, de acordo com as preferências anteriores do usuário; e iii) a exploração da similaridade das propriedades literais do modelo do usuário. Os experimentos de avaliação usaram dados combinados dos bancos de dados MovieLens e LastFM com os dados semânticos da DBpedia. Os resultados indicam aumentos estatisticamente significativos nas recomendações top-n em todas as métricas testadas: Precision@K (K=5, 10), Map e NDCG, em relação aos métodos de similaridade de referência não personalizados, como Linked Data Semantic Distance (LDSD) e Resource Similarity (ReSim). Os resultados mostram que as estratégias propostas neste trabalho podem ser eficientes para aprimorar sistemas de recomendação semânticos em diversos domínios do conhecimento, pois a solução é escalável para quaisquer bancos de dados baseados em LOD.pt_BR
dc.publisher.departmentInstituto de Computação - ICpt_BR
dc.relation.referencesADOMAVICIUS, G.; TUZHILIN; ALEXANDER. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, Institute of Electrical and Electronics Engineers (IEEE), v. 17, n. 6, p. 734–749, jun 2005. AGGARWAL, C. C. Recommender systems: the textbook. [S.l.]: Springer International Publishing, 2016. ANGLES, R.; GUTIERREZ, C. The expressive power of sparql. In: SPRINGER. International Semantic Web Conference. [S.l.], 2008. p. 114–129. BARMAN, A.; TEWARI, A. S. Collaborative recommendation system using dynamic content based filtering, association rule mining and opinion mining. International Journal of Intelligent Engineering and Systems, The Intelligent Networks and Systems Society, v. 10, n. 5, p. 57–66, oct 2017. BERNERS-LEE, T. Linked-data design issues. w3c design issue document. The WorldWide Web Consortium W3C, 2009. BERNERS-LEE, T. Design issues: Linked data (2006). URL http://www.w3.org/DesignIssues/LinkedData.html, 2011. BERNERS-LEE, T.; FIELDING, R.; MASINTER, L. Rfc 3986. Uniform Resource Identifier (URI): Generic Syntax, InternetEngineering Task Force, 2005. BERNERS-LEE, T. et al. The semantic web. Scientific american, New York, NY, USA:, v. 284, n. 5, p. 28–37, 2001. BIZER, C.; HEATH, T.; Berners-Lee, T. Linked data - the story so far. Int. J. Semantic Web Inf. Syst., v. 5, n. 3, p. 1–22, 2009. BIZER, C.; HEATH, T.; BERNERS-LEE, T. Linked data-the story so far. Semantic services, interoperability and web applications: emerging concepts, p. 205–227, 2009. BRICKLEY, D.; MILLER, L. FOAF Vocabulary Specification. [S.l.], 2004. Http://xmlns.com/foaf/0.1/. URL: <http://xmlns.com/foaf/0.1/>. BURKE, R. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, Kluwer Academic Publishers, Hingham, MA, USA, v. 12, n. 4, p. 331–370, nov. 2002. ISSN 0924-1868. CAO, Y. et al. Unifying knowledge graph learning and recommendation: Towards a better understanding of user preferences. In: The World Wide Web Conference. New York, NY, USA: Association for Computing Machinery, 2019. (WWW ’19), p. 151–161. ISBN 9781450366748. URL: <https://doi.org/10.1145/3308558.3313705>. CATHERINE, R.; COHEN, W. Personalized recommendations using knowledge graphs: A probabilistic logic programming approach. In: Proceedings of the 10th ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2016. (RecSys ’16), p. 325–332. ISBN 978-1-4503-4035-9. CHENIKI, N. et al. Lods: A linked open data based similarity measure. 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), p. 229–234, 2016. CODINA, V.; RICCI, F.; CECCARONI, L. Exploiting the Semantic Similarity of Contextual Situations for Pre-filtering Recommendation. [S.l.]: Springer, Berlin, Heidelberg, 2013. CONTRIBUTORS, D. How to edit the dbpedia ontology. In: . DBpedia Mappings. DBpedia.org, 2022. URL: <https://mappings.dbpedia.org/index.php/How\_ to\_edit\_the\_DBpedia\_Ontology/>. Acesso em: March 9th, 2022. DAVOODI, E.; KIANMEHR, K.; AFSHARCHI, M. A semantic social network-based expert recommender system. Applied Intelligence, Springer Nature, v. 39, n. 1, p. 1–13, oct 2013. ISSN 1573-7497. DIETZ, J. L. What is Enterprise Ontology? [S.l.]: Springer, 2006. DU, Y. et al. Post-hoc recommendation explanations through an efficient exploitation of the dbpedia category hierarchy. Knowledge-Based Systems, v. 245, p. 108560, 2022. ISSN 0950-7051. URL: <https://www.sciencedirect.com/science/article/pii/S09507 05122002490>. FERRÉ, S. Sparklis: a sparql endpoint explorer for expressive question answering. In: ISWC posters & demonstrations track. [S.l.: s.n.], 2014. FIELDING, R. et al. Hypertext transfer protocol–HTTP/1.1. [S.l.], 1999. FRESSATO, E. P. Incorporação de metadados semânticos para recomendação no cenário de partida fria. 105 p. Tese (Doutorado) — Universidade de São Paulo, 2019. GAN, L. et al. Emdkg: Improving accuracy-diversity trade-off in recommendation with em-based model and knowledge graph embedding. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. New York, NY, USA: Association for Computing Machinery, 2021. (WI-IAT ’21), p. 17–24. ISBN 9781450391153. URL: <https://doi.org/10.1145/3486622.3493925>. GARCÍA, C. G. et al. Social recommender system: A recommender system based on tweets for points of interest. In: Proceedings of the 4th Multidisciplinary International Social Networks Conference on ZZZ - MISNC '17. New York, NY, USA: ACM Press, 2017. (MISNC ’17), p. 28:1–28:7. ISBN 978-1-4503-4881-2. GARSHOL, L. M. Living with topic maps and rdf. Online only, Citeseer, v. 13, 2003. GEMMIS, M. de et al. Semantics-aware content-based recommender systems. In: RICCI, F.; ROKACH, L.; SHAPIRA, B. (Ed.). Recommender Systems Handbook. Boston, MA: Springer US, 2015. p. 119–159. ISBN 978-1-4899-7637-6. GRUBER, T. R. Toward principles for the design of ontologies used for knowledge sharing? International journal of human-computer studies, Elsevier, v. 43, n. 5-6, p. 907–928, 1995. GUHA, R.; BRICKLEY, D. W3C Recommendation, RDF Schema 1.1. 2014. URL: <http://www.w3.org/TR/2014/REC-rdf-schema-20140225/>. GUO, G. Resolving data sparsity and cold start in recommender systems. In: MASTHOFF, J. et al. (Ed.). User Modeling, Adaptation, and Personalization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. p. 361–364. ISBN 978-3-642-31454-4. GUO, S.; ALAMUDUN, F.; HAMMOND, T. Résumatcher: A personalized résumé-job matching system. Expert Systems with Applications, Elsevier, v. 60, p. 169–182, 2016. GUY, I. People recommendation on social media. In: . Social Information Access: Systems and Technologies. Cham: Springer International Publishing, 2018. p. 570–623. ISBN 978-3-319-90092-6. GUYON, I.; ELISSEEFF, A. An introduction to variable and feature selection. J. Mach. Learn. Res., JMLR.org, v. 3, p. 1157–1182, mar. 2003. ISSN 1532-4435. HERLOCKER, J. L. et al. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, Association for Computing Machinery (ACM), v. 22, n. 1, p. 5–53, jan 2004. HOLZE, J. Dbpedia snapshot 2022-12 release. In: . DBpedia Archive: Announcement. DBpedia.org, 2023. URL: <https://www.dbpedia.org/blog/dbpedia-sna pshot-2022-12-release/>. Acesso em: March 27th, 2023. HUTT, K. A comparison of rdf query languages. In: Proc. of 21th Computer Science Seminar, Hartfort, Connecticut. [S.l.: s.n.], 2005. p. 1–7. ISINKAYE, F.; FOLAJIMI, Y.; OJOKOH, B. Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, Elsevier BV, v. 16, n. 3, p. 261– 273, nov 2015. JäRVELIN, K.; KEKäLäINEN, J. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., ACM, New York, NY, USA, v. 20, n. 4, p. 422–446, out. 2002. ISSN 1046-8188. JAWAHEER, G.; WELLER, P.; KOSTKOVA, P. Modeling user preferences in recommender systems: A classification framework for explicit and implicit user feedback. ACM Transactions on Interactive Intelligent Systems, Association for Computing Machinery (ACM), v. 4, n. 2, p. 1–26, jun 2014. JOSEPH, K.; JIANG, H. Content based news recommendation via shortest entity distance over knowledge graphs. In: Companion Proceedings of The 2019 World Wide Web Conference. New York, NY, USA: ACM, 2019. (WWW ’19), p. 690–699. ISBN 978-1- 4503-6675-5. KAUFMAN, L.; ROUSSEEUW, P. J. Finding Groups in Data: An Introduction to Cluster Analysis. [S.l.]: John Wiley, 1990. ISBN 978-0-47031680-1. KIM, M. H. J. G. 5(star) open data. In: . 5stardata.info. Content freely available under the CC0 Public Domain Dedication, 2019. URL: <https://5stardata.in fo/en/>. Acesso em: June 6th, 2019. KLUVER, D.; EKSTRAND, M. D.; KONSTAN, J. A. Rating-based collaborative filtering: Algorithms and evaluation. In: . Social Information Access. [S.l.]: Springer International Publishing, 2018. cap. 10, p. 344–390. ISBN 978-3-319-90092-6. KLYNE, G.; CARROLL, J. J. Resource description framework (rdf): Concepts and abstract syntax. 2006. KOBILAROV, G. et al. Media meets semantic web - how the bbc uses dbpedia and linked data to make connections. In: ESWC. [S.l.: s.n.], 2009. KUMAR, P.; THAKUR, R. S. Recommendation system techniques and related issues: a survey. International Journal of Information Technology, Springer Nature, v. 10, n. 4, p. 495–501, apr 2018. LAM, X. N. et al. Addressing cold-start problem in recommendation systems. In: Proceedings of the 2Nd International Conference on Ubiquitous Information Management and Communication. New York, NY, USA: ACM, 2008. (ICUIMC ’08), p. 208–211. ISBN 978-1-59593-993-7. LEHMANN, J. et al. DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web Journal, v. 6, n. 2, p. 167–195, 2015. URL: <http://jens-lehmann.org/files/2015/swj\_dbpedia.pdf>. LÜ, L. et al. Recommender systems. Physics Reports, Elsevier BV, v. 519, n. 1, p. 1–49, oct 2012. MANNING, C. D.; RAGHAVAN, P.; SCHÜTZE, H. Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press, 2008. ISBN 0521865719, 9780521865715. MANNING, C. D.; RAGHAVAN, P.; SCHüTZE, H. Evaluation in information retrieval. In: . Introduction to Information Retrieval. [S.l.]: Cambridge University Press, 2008. p. 139–161. MCCRAE, J. P. The linked open data cloud. In: . The Linked Open Data Cloud. Insight Centre for Data Analytics, 2023. URL: <https://lod-cloud.net/>. Acesso em: September 3rd, 2023. MUSTO, C. et al. Semantics-aware graph-based recommender systems exploiting linked open data. In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. New York, NY, USA: ACM, 2016. (UMAP ’16), p. 229–237. ISBN 978- 1-4503-4368-8. NATARAJAN, S. et al. Cd-semmf: Cross-domain semantic relatedness based matrix factorization model enabled with linked open data for user cold start issue. IEEE Access, v. 10, p. 52955–52970, 2022. URL: <https://doi.org/10.1109/ACCESS.2022.31 75566>. NOIA, T. D. et al. Using ontology-based data summarization to develop semanticsaware recommender systems. In: GANGEMI, A. et al. (Ed.). The Semantic Web. Cham: Springer International Publishing, 2018. p. 128–144. ISBN 978-3-319-93417-4. NOIA, T. D. et al. Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems. New York, NY, USA: ACM, 2012. (I-SEMANTICS ’12), p. 1–8. ISBN 978-1-4503-1112-0. PAN, J. Z. Resource description framework. In: Handbook on ontologies. [S.l.]: Springer, 2009. p. 71–90. PARRA, D.; SAHEBI, S. Recommender systems: Sources of knowledge and evaluation metrics. In: . Advanced Techniques in Web Intelligence-2: Web User Browsing Behaviour and Preference Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. p. 149–175. ISBN 978-3-642-33326-2. PASSANT, A. Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence. [S.l.]: AAAI, 2010. PÉREZ, J.; ARENAS, M.; GUTIERREZ, C. Semantics and complexity of sparql. ACM Transactions on Database Systems (TODS), ACM, v. 34, n. 3, p. 16, 2009. PERRY, M.; HERRING, J. Ogc geosparql-a geographic query language for rdf data. OGC Implementation Standard. Sept, 2012. PIAO, G.; ARA, S. s.; BRESLIN, J. G. Computing the semantic similarity of resources in dbpedia for recommendation purposes. In: QI, G. et al. (Ed.). Semantic Technology. Cham: Springer International Publishing, 2016. p. 185–200. PIAO, G.; BRESLIN, J. G. Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing. New York, NY, USA: ACM, 2016. (SAC ’16), p. 315–320. ISBN 978-1-4503- 3739-7. PIAO, G.; BRESLIN, J. G. Inferring user interests in microblogging social networks: a survey. User Modeling and User-Adapted Interaction, Springer Nature America, Inc, v. 28, n. 3, p. 277–329, aug 2018. REUSENS, M. et al. A note on explicit versus implicit information for job recommendation. Decision Support Systems, Elsevier BV, v. 98, p. 26–35, jun 2017. RICCI, F.; ROKACH, L.; SHAPIRA, B. Recommender systems: introduction and challenges. In: Recommender systems handbook. [S.l.]: Springer International Publishing, 2015. p. 1–34. SARKER, M. K. et al. Explaining trained neural networks with semantic web technologies: First steps. Proceedings of the Twelveth International Workshop on Neural-Symbolic Learning and Reasoning, 2017. SARWAR, B. et al. Item-based collaborative filtering recommendation algorithms. In: Proceedings of the tenth international conference on World Wide Web - WWW '01. [S.l.]: ACM Press, 2001. (WWW ’01), p. 285–295. ISBN 1-58113-348-0. SAVESKI, M.; MANTRACH, A. Item cold-start recommendations: learning local collective embeddings. In: Proceedings of the 8th ACM Conference on Recommender systems - RecSys '14. [S.l.]: ACM Press, 2014. p. 89–96. SEDHAIN, S. et al. Social collaborative filtering for cold-start recommendations. In: Proceedings of the 8th ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2014. (RecSys ’14), p. 345–348. ISBN 978-1-4503-2668-1. SHANI, G.; GUNAWARDANA, A. Evaluating recommendation systems. In: . Recommender Systems Handbook. Boston, MA: Springer US, 2011. p. 257–297. ISBN 978-0- 387-85820-3. SHI, Y. et al. Climf: Learning to maximize reciprocal rank with collaborative less-is-more filtering. In: Proceedings of the sixth ACM conference on Recommender systems - RecSys '12. New York, NY, USA: ACM Press, 2012. (RecSys ’12), p. 139–146. SILVA, G. O. M. da; DURãO, F. A.; CAPRETZ, M. Pldsd: Personalized linked data semantic distance for lod-based recommender systems. In: Proceedings of the 21st International Conference on Information Integration and Web-Based Applications and Services. New York, NY, USA: Association for Computing Machinery, 2019. (iiWAS2019), p. 294–303. ISBN 9781450371797. URL: <https://doi.org/10.1145/3366030.33 66041>. TERÁN, L.; MENSAH, A. O.; ESTORELLI, A. A literature review for recommender systems techniques used in microblogs. Expert Systems with Applications, Elsevier BV, v. 103, p. 63–73, aug 2018. THORAT, P. B.; GOUDAR, R. M.; BARVE, S. Survey on collaborative filtering, contentbased filtering and hybrid recommendation system. International Journal of Computer Applications, Foundation of Computer Science, v. 110, n. 4, p. 31–36, jan 2015. TRIPERINA, E. et al. Creating the context for exploiting linked open data in multidimensional academic ranking. International Journal of Recent Contributions from Engineering, Science & IT (iJES), v. 3, n. 3, p. 33–43, 2015. ZHANG, F. et al. Alleviating the data sparsity problem of recommender systems by clustering nodes in bipartite networks. Expert Systems with Applications, v. 149, p. 113346, 2020. ISSN 0957-4174. URL: <https://www.sciencedirect.com/science/article/ pii/S0957417420301718>. ZHANG, Z.-K. et al. Solving the cold-start problem in recommender systems with social tags. EPL (Europhysics Letters), IOP Publishing, v. 92, n. 2, p. 28002, oct 2010.pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PGCOMP)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Silva-Gabriela-Tese-PGCOMP-2023-Exploiting_Lod_Based_Similarity_Personalization_Strategies_for_Recommender_Systems.pdf10,63 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.