dc.relation.references | ADOMAVICIUS, G.; TUZHILIN; ALEXANDER. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, Institute of Electrical and Electronics Engineers (IEEE), v. 17, n. 6, p. 734–749, jun 2005.
AGGARWAL, C. C. Recommender systems: the textbook. [S.l.]: Springer International Publishing, 2016.
ANGLES, R.; GUTIERREZ, C. The expressive power of sparql. In: SPRINGER. International Semantic Web Conference. [S.l.], 2008. p. 114–129.
BARMAN, A.; TEWARI, A. S. Collaborative recommendation system using dynamic content based filtering, association rule mining and opinion mining. International Journal of Intelligent Engineering and Systems, The Intelligent Networks and Systems Society, v. 10, n. 5, p. 57–66, oct 2017.
BERNERS-LEE, T. Linked-data design issues. w3c design issue document. The WorldWide Web Consortium W3C, 2009.
BERNERS-LEE, T. Design issues: Linked data (2006). URL http://www.w3.org/DesignIssues/LinkedData.html, 2011.
BERNERS-LEE, T.; FIELDING, R.; MASINTER, L. Rfc 3986. Uniform Resource Identifier (URI): Generic Syntax, InternetEngineering Task Force, 2005.
BERNERS-LEE, T. et al. The semantic web. Scientific american, New York, NY, USA:, v. 284, n. 5, p. 28–37, 2001.
BIZER, C.; HEATH, T.; Berners-Lee, T. Linked data - the story so far. Int. J. Semantic Web Inf. Syst., v. 5, n. 3, p. 1–22, 2009.
BIZER, C.; HEATH, T.; BERNERS-LEE, T. Linked data-the story so far. Semantic services, interoperability and web applications: emerging concepts, p. 205–227, 2009.
BRICKLEY, D.; MILLER, L. FOAF Vocabulary Specification. [S.l.], 2004.
Http://xmlns.com/foaf/0.1/. URL: <http://xmlns.com/foaf/0.1/>.
BURKE, R. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, Kluwer Academic Publishers, Hingham, MA, USA, v. 12, n. 4, p. 331–370, nov. 2002. ISSN 0924-1868.
CAO, Y. et al. Unifying knowledge graph learning and recommendation: Towards a
better understanding of user preferences. In: The World Wide Web Conference. New
York, NY, USA: Association for Computing Machinery, 2019. (WWW ’19), p. 151–161.
ISBN 9781450366748. URL: <https://doi.org/10.1145/3308558.3313705>.
CATHERINE, R.; COHEN, W. Personalized recommendations using knowledge graphs: A probabilistic logic programming approach. In: Proceedings of the 10th ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2016. (RecSys ’16), p. 325–332. ISBN 978-1-4503-4035-9.
CHENIKI, N. et al. Lods: A linked open data based similarity measure. 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), p. 229–234, 2016.
CODINA, V.; RICCI, F.; CECCARONI, L. Exploiting the Semantic Similarity of Contextual Situations for Pre-filtering Recommendation. [S.l.]: Springer, Berlin, Heidelberg, 2013.
CONTRIBUTORS, D. How to edit the dbpedia ontology. In: . DBpedia Mappings. DBpedia.org, 2022. URL: <https://mappings.dbpedia.org/index.php/How\_ to\_edit\_the\_DBpedia\_Ontology/>. Acesso em: March 9th, 2022.
DAVOODI, E.; KIANMEHR, K.; AFSHARCHI, M. A semantic social network-based expert recommender system. Applied Intelligence, Springer Nature, v. 39, n. 1, p. 1–13, oct 2013. ISSN 1573-7497.
DIETZ, J. L. What is Enterprise Ontology? [S.l.]: Springer, 2006.
DU, Y. et al. Post-hoc recommendation explanations through an efficient exploitation of the dbpedia category hierarchy. Knowledge-Based Systems, v. 245, p. 108560, 2022. ISSN 0950-7051. URL: <https://www.sciencedirect.com/science/article/pii/S09507 05122002490>.
FERRÉ, S. Sparklis: a sparql endpoint explorer for expressive question answering. In: ISWC posters & demonstrations track. [S.l.: s.n.], 2014.
FIELDING, R. et al. Hypertext transfer protocol–HTTP/1.1. [S.l.], 1999.
FRESSATO, E. P. Incorporação de metadados semânticos para recomendação no cenário de partida fria. 105 p. Tese (Doutorado) — Universidade de São Paulo, 2019.
GAN, L. et al. Emdkg: Improving accuracy-diversity trade-off in recommendation with em-based model and knowledge graph embedding. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. New York, NY, USA: Association for Computing Machinery, 2021. (WI-IAT ’21), p. 17–24. ISBN 9781450391153. URL: <https://doi.org/10.1145/3486622.3493925>.
GARCÍA, C. G. et al. Social recommender system: A recommender system based on tweets for points of interest. In: Proceedings of the 4th Multidisciplinary International Social Networks Conference on ZZZ - MISNC '17. New York, NY, USA: ACM Press, 2017. (MISNC ’17), p. 28:1–28:7. ISBN 978-1-4503-4881-2.
GARSHOL, L. M. Living with topic maps and rdf. Online only, Citeseer, v. 13, 2003.
GEMMIS, M. de et al. Semantics-aware content-based recommender systems. In: RICCI, F.; ROKACH, L.; SHAPIRA, B. (Ed.). Recommender Systems Handbook. Boston, MA: Springer US, 2015. p. 119–159. ISBN 978-1-4899-7637-6.
GRUBER, T. R. Toward principles for the design of ontologies used for knowledge sharing? International journal of human-computer studies, Elsevier, v. 43, n. 5-6, p. 907–928, 1995.
GUHA, R.; BRICKLEY, D. W3C Recommendation, RDF Schema 1.1. 2014. URL: <http://www.w3.org/TR/2014/REC-rdf-schema-20140225/>.
GUO, G. Resolving data sparsity and cold start in recommender systems. In: MASTHOFF, J. et al. (Ed.). User Modeling, Adaptation, and Personalization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. p. 361–364. ISBN 978-3-642-31454-4.
GUO, S.; ALAMUDUN, F.; HAMMOND, T. Résumatcher: A personalized résumé-job matching system. Expert Systems with Applications, Elsevier, v. 60, p. 169–182, 2016.
GUY, I. People recommendation on social media. In: . Social Information Access: Systems and Technologies. Cham: Springer International Publishing, 2018. p. 570–623. ISBN 978-3-319-90092-6.
GUYON, I.; ELISSEEFF, A. An introduction to variable and feature selection. J. Mach. Learn. Res., JMLR.org, v. 3, p. 1157–1182, mar. 2003. ISSN 1532-4435.
HERLOCKER, J. L. et al. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, Association for Computing Machinery (ACM), v. 22, n. 1, p. 5–53, jan 2004.
HOLZE, J. Dbpedia snapshot 2022-12 release. In: . DBpedia Archive: Announcement. DBpedia.org, 2023. URL: <https://www.dbpedia.org/blog/dbpedia-sna pshot-2022-12-release/>. Acesso em: March 27th, 2023.
HUTT, K. A comparison of rdf query languages. In: Proc. of 21th Computer Science Seminar, Hartfort, Connecticut. [S.l.: s.n.], 2005. p. 1–7.
ISINKAYE, F.; FOLAJIMI, Y.; OJOKOH, B. Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, Elsevier BV, v. 16, n. 3, p. 261– 273, nov 2015.
JäRVELIN, K.; KEKäLäINEN, J. Cumulated gain-based evaluation of ir techniques.
ACM Trans. Inf. Syst., ACM, New York, NY, USA, v. 20, n. 4, p. 422–446, out. 2002.
ISSN 1046-8188.
JAWAHEER, G.; WELLER, P.; KOSTKOVA, P. Modeling user preferences in recommender systems: A classification framework for explicit and implicit user feedback. ACM Transactions on Interactive Intelligent Systems, Association for Computing Machinery (ACM), v. 4, n. 2, p. 1–26, jun 2014.
JOSEPH, K.; JIANG, H. Content based news recommendation via shortest entity distance over knowledge graphs. In: Companion Proceedings of The 2019 World Wide Web Conference. New York, NY, USA: ACM, 2019. (WWW ’19), p. 690–699. ISBN 978-1- 4503-6675-5.
KAUFMAN, L.; ROUSSEEUW, P. J. Finding Groups in Data: An Introduction to Cluster Analysis. [S.l.]: John Wiley, 1990. ISBN 978-0-47031680-1.
KIM, M. H. J. G. 5(star) open data. In: . 5stardata.info. Content freely available under the CC0 Public Domain Dedication, 2019. URL: <https://5stardata.in fo/en/>. Acesso em: June 6th, 2019.
KLUVER, D.; EKSTRAND, M. D.; KONSTAN, J. A. Rating-based collaborative filtering: Algorithms and evaluation. In: . Social Information Access. [S.l.]: Springer International Publishing, 2018. cap. 10, p. 344–390. ISBN 978-3-319-90092-6.
KLYNE, G.; CARROLL, J. J. Resource description framework (rdf): Concepts and abstract syntax. 2006.
KOBILAROV, G. et al. Media meets semantic web - how the bbc uses dbpedia and linked data to make connections. In: ESWC. [S.l.: s.n.], 2009.
KUMAR, P.; THAKUR, R. S. Recommendation system techniques and related issues: a survey. International Journal of Information Technology, Springer Nature, v. 10, n. 4, p. 495–501, apr 2018.
LAM, X. N. et al. Addressing cold-start problem in recommendation systems. In: Proceedings of the 2Nd International Conference on Ubiquitous Information Management and Communication. New York, NY, USA: ACM, 2008. (ICUIMC ’08), p. 208–211. ISBN 978-1-59593-993-7.
LEHMANN, J. et al. DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web Journal, v. 6, n. 2, p. 167–195, 2015. URL: <http://jens-lehmann.org/files/2015/swj\_dbpedia.pdf>.
LÜ, L. et al. Recommender systems. Physics Reports, Elsevier BV, v. 519, n. 1, p. 1–49, oct 2012.
MANNING, C. D.; RAGHAVAN, P.; SCHÜTZE, H. Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press, 2008. ISBN 0521865719, 9780521865715.
MANNING, C. D.; RAGHAVAN, P.; SCHüTZE, H. Evaluation in information retrieval. In: . Introduction to Information Retrieval. [S.l.]: Cambridge University Press, 2008. p. 139–161.
MCCRAE, J. P. The linked open data cloud. In: . The Linked Open Data Cloud. Insight Centre for Data Analytics, 2023. URL: <https://lod-cloud.net/>. Acesso em: September 3rd, 2023.
MUSTO, C. et al. Semantics-aware graph-based recommender systems exploiting linked open data. In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. New York, NY, USA: ACM, 2016. (UMAP ’16), p. 229–237. ISBN 978- 1-4503-4368-8.
NATARAJAN, S. et al. Cd-semmf: Cross-domain semantic relatedness based matrix factorization model enabled with linked open data for user cold start issue. IEEE Access, v. 10, p. 52955–52970, 2022. URL: <https://doi.org/10.1109/ACCESS.2022.31 75566>.
NOIA, T. D. et al. Using ontology-based data summarization to develop semanticsaware recommender systems. In: GANGEMI, A. et al. (Ed.). The Semantic Web. Cham: Springer International Publishing, 2018. p. 128–144. ISBN 978-3-319-93417-4.
NOIA, T. D. et al. Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems. New York, NY, USA: ACM, 2012. (I-SEMANTICS ’12), p. 1–8. ISBN 978-1-4503-1112-0.
PAN, J. Z. Resource description framework. In: Handbook on ontologies. [S.l.]: Springer, 2009. p. 71–90.
PARRA, D.; SAHEBI, S. Recommender systems: Sources of knowledge and evaluation metrics. In: . Advanced Techniques in Web Intelligence-2: Web User Browsing Behaviour and Preference Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
p. 149–175. ISBN 978-3-642-33326-2.
PASSANT, A. Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence. [S.l.]: AAAI, 2010.
PÉREZ, J.; ARENAS, M.; GUTIERREZ, C. Semantics and complexity of sparql. ACM Transactions on Database Systems (TODS), ACM, v. 34, n. 3, p. 16, 2009.
PERRY, M.; HERRING, J. Ogc geosparql-a geographic query language for rdf data. OGC Implementation Standard. Sept, 2012.
PIAO, G.; ARA, S. s.; BRESLIN, J. G. Computing the semantic similarity of resources
in dbpedia for recommendation purposes. In: QI, G. et al. (Ed.). Semantic Technology.
Cham: Springer International Publishing, 2016. p. 185–200.
PIAO, G.; BRESLIN, J. G. Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing. New York, NY, USA: ACM, 2016. (SAC ’16), p. 315–320. ISBN 978-1-4503- 3739-7.
PIAO, G.; BRESLIN, J. G. Inferring user interests in microblogging social networks: a survey. User Modeling and User-Adapted Interaction, Springer Nature America, Inc, v. 28, n. 3, p. 277–329, aug 2018.
REUSENS, M. et al. A note on explicit versus implicit information for job recommendation. Decision Support Systems, Elsevier BV, v. 98, p. 26–35, jun 2017.
RICCI, F.; ROKACH, L.; SHAPIRA, B. Recommender systems: introduction and challenges. In: Recommender systems handbook. [S.l.]: Springer International Publishing, 2015. p. 1–34.
SARKER, M. K. et al. Explaining trained neural networks with semantic web technologies: First steps. Proceedings of the Twelveth International Workshop on Neural-Symbolic Learning and Reasoning, 2017.
SARWAR, B. et al. Item-based collaborative filtering recommendation algorithms. In: Proceedings of the tenth international conference on World Wide Web - WWW '01. [S.l.]: ACM Press, 2001. (WWW ’01), p. 285–295. ISBN 1-58113-348-0.
SAVESKI, M.; MANTRACH, A. Item cold-start recommendations: learning local collective embeddings. In: Proceedings of the 8th ACM Conference on Recommender systems - RecSys '14. [S.l.]: ACM Press, 2014. p. 89–96.
SEDHAIN, S. et al. Social collaborative filtering for cold-start recommendations. In: Proceedings of the 8th ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2014. (RecSys ’14), p. 345–348. ISBN 978-1-4503-2668-1.
SHANI, G.; GUNAWARDANA, A. Evaluating recommendation systems. In: . Recommender Systems Handbook. Boston, MA: Springer US, 2011. p. 257–297. ISBN 978-0- 387-85820-3.
SHI, Y. et al. Climf: Learning to maximize reciprocal rank with collaborative less-is-more filtering. In: Proceedings of the sixth ACM conference on Recommender systems - RecSys '12. New York, NY, USA: ACM Press, 2012. (RecSys ’12), p. 139–146.
SILVA, G. O. M. da; DURãO, F. A.; CAPRETZ, M. Pldsd: Personalized linked data semantic distance for lod-based recommender systems. In: Proceedings of the 21st International Conference on Information Integration and Web-Based Applications and Services. New York, NY, USA: Association for Computing Machinery, 2019. (iiWAS2019), p. 294–303. ISBN 9781450371797. URL: <https://doi.org/10.1145/3366030.33 66041>.
TERÁN, L.; MENSAH, A. O.; ESTORELLI, A. A literature review for recommender systems techniques used in microblogs. Expert Systems with Applications, Elsevier BV, v. 103, p. 63–73, aug 2018.
THORAT, P. B.; GOUDAR, R. M.; BARVE, S. Survey on collaborative filtering, contentbased filtering and hybrid recommendation system. International Journal of Computer Applications, Foundation of Computer Science, v. 110, n. 4, p. 31–36, jan 2015.
TRIPERINA, E. et al. Creating the context for exploiting linked open data in multidimensional academic ranking. International Journal of Recent Contributions from Engineering, Science & IT (iJES), v. 3, n. 3, p. 33–43, 2015.
ZHANG, F. et al. Alleviating the data sparsity problem of recommender systems by clustering nodes in bipartite networks. Expert Systems with Applications, v. 149, p. 113346, 2020. ISSN 0957-4174. URL: <https://www.sciencedirect.com/science/article/ pii/S0957417420301718>.
ZHANG, Z.-K. et al. Solving the cold-start problem in recommender systems with social tags. EPL (Europhysics Letters), IOP Publishing, v. 92, n. 2, p. 28002, oct 2010. | pt_BR |