dc.relation.references | ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS:
NBR-6118: Projeto de estruturas de concreto - Procedimento. Rio de Janeiro, 2023.
NBR-7215: Cimento Portland - Determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro, 2019a.
NBR-8802: Concreto endurecido - Determinação da velocidade de propagação de onda ultrassônica. Rio de Janeiro, 2019b.
NBR-9778: Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro, 2009.
NBR-9779: Argamassa e concreto endurecidos - Determinação da absorção de água por capilaridade. Rio de Janeiro, 2012.
NBR-13279: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro, 2005;
NBR-15575-1: Edificações habitacionais - Desempenho, Parte 1: Requisitos gerais. Rio de Janeiro, 2021.
NBR-15630: Argamassa para assentamento e revestimento de paredes e tetos - Determinação do módulo de elasticidade dinâmico através da propagação de onda ultrassônica. Rio de Janeiro, 2008.
NBR-16697: Cimento Portland - Requisitos. Rio de Janeiro, 2018.
AGUNWAMBA, J. C.; ADAGBA, T. A Comparative Analysis of the Rebound Hammer and Ultrasonic Pulse Velocity in Testing Concrete. Nigerian Journal of Technology, v. 31, p. 31–39, 2012.
ALGHAMRI, RAMI.; KANELLOPOULOS, ANTONIOS.; AL-TABBAA, ABIR. Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Construction and Building Materials, n. 124, p. 910–921, ago. 2016.
AL-TABBAA, A. et al. First UK field application and performance of microcapsule-based self-healing concrete. Construction and Building Materials, v. 208, n. 2019, p. 669–685, 2019.
ANDREOLLI DIAS, L. et al. CONCRETO REFORÇADO COM FIBRA DE RESÍDUO TÊXTIL ORIUNDO DA PRODUÇÃO DE PNEU. Revista Tecnologia e Tendências, Universidade FEEVALE, v. 10, n. 1, p. 107–131, jan. 2019.
ARCELORMITTAL BRASIL. Escória de Alto-Forno. Disponível em: <https://brasil.arcelormittal.com/produtos-solucoes/coprodutos/coprodutos/escoria-alto-forno>. Acesso em: 16 maio. 2023.
ASTM - AMERICAN SOCIETY FOR TESTING AND MATERIALS:
C511-21 Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes. EUA, 2021.
C1679–17 Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry. EUA, 2017.
C1702–23 Standard Test Method for Measurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal Conduction Calorimetry. EUA, 2023.
AUGUSTIN, M. A.; HEMAR, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews, v. 38, n. 4, p. 902–912, 24 mar. 2009.
BADKE, L. B. Síntese e Caracterização de Microcápsulas de Gelatina/Goma Arábica Contendo Óleos Essenciais ou Ácidos Graxos de Microalgas Empregados na Cosmetologia pelo Método de Coacervaçao Complexa. Curitiba: Universidade Federal do Paraná, 2017.
BAŠČAREVIĆ, Z. D. The resistance of alkali-activated cement-based binders to chemical attack. Em: PACHECO-TORGAL, F. et al. (Eds.). Handbook of Alkali-Activated Cements, Mortars and Concretes. Sawston, Reino Unido: Woodhead Publishing, 2015. p. 373–396.
BEAUDOIN, J.; ODLER, I. Hydration, Setting and Hardening of Portland Cement. Em: HEWLETT, P. C.; LISKA, M. (Eds.). Lea’s Chemistry of Cement and Concrete. 5a ed. Amsterdã: Elsevier, 2019. p. 157–250.
BELIE, N. DE et al. A Review of Self-healing Concrete for Damage Management of Structures. Advanced Materials Interfaces, v. 5, n. 17, maio 2018.
BENSTED, J. Some applications of conduction calorimetry to cement hydration. Advances in Cement Research, v. 1, n. 1, p. 35–44, out. 1987.
BISPO SANTOS, T. et al. Influência do teor de silicato de sódio na produção de microcápsulas poliméricas para aplicação em materiais cimentícios. Congresso da Universidade Federal da Bahia (Congresso UFBA 2023). Anais...2023. Disponível em: <https://proext.ufba.br/sites/proext.ufba.br/files/congresso-ufba-2023.1_caderno-resumos_miolo.pdf>. Acesso em: 30 maio. 2023
BOH PODGORNIK, B.; ŠUMIGA, B. Microencapsulation technology and its applications in building construction materials. [s.l: s.n.]. Disponível em: <https://www.researchgate.net/publication/285028155>.
BOLINA, F. L.; TUTIKIAN, B. F.; HELENE, P. R. DO L. PATOLOGIA DAS ESTRUTURAS DE CONCRETO. Em: Patologia de estruturas. São Paulo: Oficina de Textos, 2019. p. 63–167.
BONNARD, N. et al. Métasilicate de disodium: Fiche toxicologique n°259. France, 2006. Disponível em: <www.inrs.fr/fichetox>
BUILDING RESEARCH ESTABLISHMENT LDT. Residual Life Models for Concrete Repair - Assessment of the Concrete Repair Process. UK, 2003. Disponível em: <http://projects.bre.co.uk/rebarcorrosioncost/PseudoCodes/Draft 1 Residual life Concrete Repair Report Oct 02.pdf>
BURGESS, D. J. Practical analysis of complex coacervate systems. Journal of Colloid And Interface Science, v. 140, n. 1, p. 227–238, 18 abr. 1990.
BURGESS, D. J. Complex Coacervation: Microcapsule Formation. Em: DUBM et al. (Eds.). Macromolecular Complexes in Chemistry and Biology. Berlin: Springer Berlin Heidelberg, 1994. p. 285–300.
BUTSTRAEN, C.; SALAÜN, F. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, v. 99, p. 608–616, jan. 2014.
CALLISTER JR, W. D.; RETHWISCH, D. G. Aplicação e Processamento das Cerâmicas. Em: BILL STENQUIST (Ed.). Ciência e Engenharia de Materiais. Uma Introdução. 9a ed. Rio de Janeiro: LTC, 2016. p. 473.
CHO, S. H. et al. Polydimethylsiloxane-based self-healing materials. Advanced Materials, v. 18, n. 8, p. 997–1000, 7 abr. 2006.
COSTA, A. R. D. et al. Hydration of sustainable ternary cements containing phosphogypsum. Sustainable Materials and Technologies, v. 28, 1 jul. 2021.
DAL MOLIN, D. C. C. Adições minerais. Em: Concreto: Ciência e Tecnologia. Ibracon. São Paulo: IBRACON, 2011. v. 1p. 261–309.
DAVIES, R. E. et al. Multi-scale cementitious self-healing systems and their application in concrete structures. (M. R. Jones et al., Eds.)The 9th International Concrete Conference: Environment, Efficiency and Economic Challenges for Concrete. Anais...Dundee, Scotland, UK: University of Dundee, 5 jul. 2016. Disponível em: <https://discovery.dundee.ac.uk/ws/portalfiles/portal/18078009/Proceedings.pdf>. Acesso em: 17 maio. 2023
DE ARAÚJO JÚNIOR, N. T. et al. Análise do módulo de elasticidade estático e dinâmico do concreto através dos ensaios de resistência à compressão e velocidade de propagação de onda ultrassônica. (G. Carvalho, L. Nunes, K. M. de V. Moreira, Eds.)60o Congresso Brasileiro do Concreto. Anais...Foz do Iguaçu: set. 2018.
DE MELO, S. K. ESTUDO DA FORMAÇÃO DA ETRINGITA TARDIA EM CONCRETO POR CALOR DE HIDRATAÇÃO DO CIMENTO. Dissertação (Mestrado em Geotecnia, Estrutura e Construção Civil)—Goiânia: Universidade Federal de Goiás, 5 jul. 2010.
DE MUYNCK, W.; DE BELIE, N.; VERSTRAETE, W. Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, v. 36, n. 2, p. 118–136, 2010.
DE SOUZA, D. J.; SANCHEZ, L. F. M. Understanding the efficiency of autogenous and autonomous self-healing of conventional concrete mixtures through mechanical and microscopical analysis. Cement and Concrete Research, v. 172, 1 out. 2023.
DEOSEN BIOCHEMIAL LTDA. Os Tipos De Gomas E Suas Aplicações Na Indústria. Aditivos & ingredientes, p. 30–40, 2015.
DER-PARANÁ. Reformas de duas pontes vão alterar tráfego de veículos em União da Vitória. Disponível em: <https://www.aen.pr.gov.br/Noticia/Reformas-de-duas-pontes-vao-alterar-trafego-de-veiculos-em-Uniao-da-Vitoria>. Acesso em: 12 dez. 2023.
DIPROTECGEO GEOSSINTÉTICOS. Fibras para Concreto. Disponível em: <https://www.diprotecgeo.com.br/produtos/fibras-para-concreto/>. Acesso em: 17 maio. 2023.
DOS SANTOS, A. M. et al. Análise do módulo de elasticidade estático e dinâmico para diferentes dosagens de concreto. 55o Congresso Brasileiro do Concreto. Anais...Gramado, RGS: IBRACON, out. 2013.
DRY, C. M. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Materials and Structures, v. 3, n. 2, p. 118–123, 1994.
DRY, C. M. Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cement and Concrete Research, v. 30, p. 1969–1977, 2000.
DUMITRIU, S. Polysaccharides Structural Diversity and Functional Versatility, Second Edition. 2. ed. New York: Marcel Dekker, 2004.
EUROCODE 2: EUROPEAN UNION PER REGULATION. EN 1992-1-1: Design of concrete structures - Part 1-1: General rules and rules for buildings. England, 2004.
EUROCODE 2: EUROPEAN UNION PER REGULATION. EN 1992-3: Design of concrete structures - Part 3: Liquid retaining and containment structures. England, 2006.
FANG, G. et al. Visualized tracing of crack self-healing features in cement/microcapsule system with X-ray microcomputed tomography. Construction and Building Materials, v. 179, p. 336–347, 10 ago. 2018.
FRANÇA, S. C. A.; COUTO, H. J. B. Análise microgranulométrica - Malvern e Sedigraph. Em: SAMPAIO, J. A.; FRANÇA, S. C. A.; BRAGA, P. F. A. (Eds.). Tratamento de Minérios: Práticas Laboratoriais. Rio de Janeiro: CETEM-MCT, 2007. p. 101–124.
FUGUET, E.; VAN PLATERINK, C.; JANSSEN, H. G. Analytical characterisation of glutardialdehyde cross-linking products in gelatine-gum arabic complex coacervates. Analytica Chimica Acta, v. 604, n. 1, p. 45–53, 26 nov. 2007.
GHOSH, S. K. Functional Coatings by Polymer Microencapsulation. Zelzate, Belgien: Wiley-VCH, 2006.
GIANNAROS, P.; KANELLOPOULOS, A.; AL-TABBAA, A. Sealing of cracks in cement using microencapsulated sodium silicate. Smart Materials and Structures, v. 25, 2016.
GILFORD, J. et al. Dicyclopentadiene and Sodium Silicate Microencapsulation for Self-Healing of Concrete. Journal of Materials in Civil Engineering, v. 26, p. 886–896, maio 2014.
GOUIN, S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends in Food Science and Technology, v. 15, p. 330–347, 2004.
GU, M. et al. Ultraviolet light-initiated preparation of phase change material microcapsules and its infrared imaging effect on fabric. Pigment and Resin Technology, v. 50, n. 2, p. 129–135, 11 mar. 2021.
HARRISSON, A. M. Constitution and Specification of Portland Cement. Em: HEWLETT, P. C.; LISKA, M. (Eds.). Lea’s Chemistry of Cement and Concrete. 5. ed. Amsterdã: Elsevier, 2019. p. 87–155.
HEARN, N.; MORLEY, C. T. Self-sealing property of concrete - Experimental evidence. Materials and Structures/Materiaux et Constructions, v. 30, n. 7, p. 404–411, 1997.
HINRICHS, R.; VASCONCELLOS, M. A. Z. Microscopia eletrônica de varredura (MEV) em baixo vácuo. Em: HINRICHS, R. (Ed.). Técnicas instrumentais não destrutivas aplicadas a gemas do RS. Hinrichs, Ruth ed. Porto Alegre-RS: IGeo/UFRGS, 2014. p. 93–106.
HOMMA, D.; MIHASHI, H.; NISHIWAKI, T. Self-Healing Capability of Fibre Reinforced Cementitious Composites. Journal of Advanced Concrete Technology, v. 7, n. 2, p. 217–228, jun. 2009.
HU, J.; GE, Z.; WANG, K. Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times. Construction and Building Materials, v. 50, p. 657–663, 2014.
HUANG, H.; YE, G. Application of sodium silicate solution as self-healing agent in cementitious materials. (C. Leung, K. T. WAN, Eds.)International RILEM Conference on Advances in Construction Materials Through Science and Engineering. Anais...RILEM Publications SARL, jan. 2011. Disponível em: <https://www.rilem.net/publication/publication/407?id_papier=7583>
IKA. C-MAG HS 7 Control. Staufen, Germany, 2023a. Disponível em: <https://www.ika.com/owa/ika/catalog.get_file?iProduct=&iDoc=0000000000000020000031429&iType=ma&iLang=PT>
IKA. Geometry of stirring tools. Staufen, Germany, 2023b. Disponível em: <https://www.ika.com/ika/pdf/flyer-catalog/20210324_Flyer_Stirrers_Technical%20Overview_6%20pages_IWS_EN_web.pdf>. Acesso em: 22 maio. 2023
IL FARAONE TOURS. Rekhmire Tomb: TT100 | Valley of the Nobles - Tombe dei Nobili. Disponível em: <https://www.youtube.com/watch?v=-i0GGDEaRJE>. Acesso em: 30 abr. 2023.
IPCC - UNITED NATIONS BODY. Synthesis Report of the Intergovernmental Panel on Climate Change - Sixth Assessment Report (IPCC AR6 SYR). Six regions of the World, 2023.
ISAIA, G. C. Concreto ciência e tecnologia. São Paulo: IBRACON, 2011.
JOHN, V. M. Cimentos de escória ativada com silicatos de sódio. Tese de Doutorado—São Paulo: Universidade de São Paulo, 1995.
KALOUSEK, G. L. STUDIES OF PORTIONS OF THE QUATERNARY SYSTEM SODA.LIME.SILICA.WATER AT 25° C. Journal of Research of the N.ational Bureau of Standards, v. 32, p. 285–302, jun. 1944.
KANELLOPOULOS, A. et al. Polymeric microcapsules with switchable mechanical properties for self-healing concrete: Synthesis, characterisation and proof of concept. Smart Materials and Structures, v. 26, n. 4, mar. 2017.
KANELLOPOULOS, A.; GIANNAROS, P.; AL-TABBAA, A. The effect of varying volume fraction of microcapsules on fresh, mechanical and self-healing properties of mortars. Construction and Building Materials, v. 122, p. 577–593, 2016.
KANELLOPOULOS, A.; QURESHI, T. S.; AL-TABBAA, A. Glass encapsulated minerals for self-healing in cement based composites. Construction and Building Materials, v. 98, p. 780–791, 15 nov. 2015.
KANTRO, D. L.; WEDDING, P. Influence of Water-Reducing Admixtures on Properties of Cement Paste - A Miniature Slump Test. Cement, Concrete and Aggregates, v. 2, n. 2, p. 95–102, 1980.
KAWAGUCHI, T.; PEARSON, R. A. The effect of particle-matrix adhesion on the mechanical behavior of glass filled epoxies: Part 1. A study on yield behavior and cohesive strength. Polymer, v. 44, n. 15, p. 4229–4238, 27 jun. 2003.
KELLER, M. W.; WHITE, S. R.; SOTTOS, N. R. A self-healing poly(dimethyl siloxane) elastomer. Advanced Functional Materials, v. 17, n. 14, p. 2399–2404, ago. 2007.
KESSLER, M. R.; SOTTOS, N. R.; WHITE, S. R. Self-healing structural composite materials. Composites: Part A: Applied Science and Manufacturing, v. 34, n. 8, p. 743–753, ago. 2003.
LEMAY, M. D. Vision 2020 Update. Concrete Repair Bulletin, v. 33, n. 1, fev. 2020.
LEMETTER, C. Y. G.; MEEUSE, F. M.; ZUIDAM, N. J. Control of the Morphology and the Size of Complex Coacervate Microcapsules During Scale-up. American Institute of Chemical Engineers, v. 55, n. 6, p. 1487–1496, jun. 2009.
LI, Y.; SUI, C. E.; DING, Q. J. Study on the cracking process of cement-based materials by AC impedance method and ultrasonic method. Journal of Nondestructive Evaluation, v. 31, n. 3, p. 284–291, set. 2012.
LITINA, C.; AL-TABBAA, A. First generation microcapsule-based self-healing cementitious construction repair materials. Construction and Building Materials, v. 255, n. 119389, 20 set. 2020.
LITTMAN, R. J.; LORENZON, M.; SILVERSTEIN, J. With & without straw: How Israelite slaves made bricks. Biblical Archaeology Review, p. 60–71, mar. 2014.
LIU, Y.; JIANG, J. Preparation of β-ionone microcapsules by gelatin/pectin complex coacervation. Carbohydrate Polymers, v. 312, 15 jul. 2023.
LUCAS, S. S. et al. Study of quantification methods in self-healing ceramics, polymers and concrete: A route towards standardization. Journal of Intelligent Material Systems and Structures, v. 27, n. 19, p. 2577–2598, 1 nov. 2016.
LV, L. et al. Micromechanical properties of a new polymeric microcapsule for self-healing cementitious materials. Materials, v. 9, n. 1225, 2016.
LV, Y. et al. The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v. 30, n. 1, p. 323–332, 2013.
MAGNAGO, E. M. Structural Covering with Self-healing Cement. (ICC & ABRACO, Ed.)21st INTERNATIONAL CORROSION CONGRESS & 8th INTERNATIONAL CORROSION MEETING. Anais...jul. 2021. Disponível em: <https://intercorr.com.br/anais/2021/ICC_INTERCORR_WCO_2021_220.pdf>. Acesso em: 30 maio. 2023
MAGNAGO, E. M. et al. Analysis of Hydration Heat in Cement Pastes with Addition of Sodium Silicate Microcapsules by Isothermal Calorimetry. 3rd International Conference on Civil Engineering Fundamentals and Applications (ICCEFA’22). Anais...Avestia Publishing, out. 2022a. Disponível em: <https://avestia.com/ICCEFA2022_Proceedings/files/paper/ICCEFA_139.pdf>. Acesso em: 30 maio. 2023
MAGNAGO, E. M. et al. Avaliação da autocicatrização de materiais cimentícios contendo silicato de sódio incorporado em micropartículas poliméricas. 24o Congresso Brasileiro de Engenharia e Ciência dos Materiais (24o CBECiMat). Anais...nov. 2022b. Disponível em: <https://www.cbecimat.com.br/anais/PDF/IVn13-001.pdf>. Acesso em: 30 maio. 2023
MALVERN PANALYTICAL. Mastersizer 3000: Smarter particle sizing. Worcestershire-UK, 2 jan. 2023.
MAO, W.; LITINA, C.; AL-TABBAA, A. Development and Application of Novel Sodium Silicate Microcapsule-Based Self-Healing Oil Well Cement. Materials, 2020.
MARQUES DA SILVA, T. et al. Coacervação complexa: Uma técnica para a encapsulação de probióticos. Ciência e Natura - 35 anos (Ed. Especial - Nano e Microencapsulação de compostos bioativos), v. 37, p. 49–55, dez. 2015.
MEHTA, P. K.; MONTEIRO, P. J. M. Concreto: Estrutura, Propriedades e Materiais. São Paulo: PINI, 1994.
MITUTOYO. Durômetros Rockwell e Brinell - HR-100/200/300/400. Buenos Aires, Argentina, 2023.
MOSTAVI, E. et al. Evaluation of Self-Healing Mechanisms in Concrete with Double-Walled Sodium Silicate Microcapsules. Journal of Materials in Civil Engineering, v. 27, n. 12, dez. 2015.
MUHOZA, B. et al. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Critical Reviews in Food Science and NutritionTaylor and Francis Ltd., , 2022.
NAVILESH, J. et al. A Study on Hybrid Fiber Reinforced Concrete. International Research Journal of Engineering and Technology, v. 4, n. 6, p. 1647–1656, jun. 2017.
NEVILLE, A. M. Properties of concrete. 5a ed. Malaysia: Pearson, 2011.
PACHECO, F. et al. Evaluation of concrete self-healing by encapsulated sodium metasilicate in perlite and expanded clay. Revista IBRACON de Estruturas e Materiais, v. 16, n. 2, 2023.
PAIXÃO, T.; GONALVES, J. P.; CABRAL ALBUQUERQUE, E. C. DE M. Desenvolvimento de microcápsulas poliméricas contendo silicato de sódio para aplicação em materiais cimentícios. Congresso da Universidade Federal da Bahia (Congresso UFBA 75 anos). Anais...dez. 2021. Disponível em: <https://congresso75anos.ufba.br/wp-content/uploads/2021/11/congresso-ufba-75anos_caderno-resumos.pdf>. Acesso em: 31 maio. 2023
PANG, J. W. C.; BOND, I. P. “Bleeding composites” - Damage detection and self-repair using a biomimetic approach. Composites Part A: Applied Science and Manufacturing, v. 36, n. 2, p. 183–188, fev. 2005a.
PANG, J. W. C.; BOND, I. P. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Composites Science and Technology, v. 65, n. 11–12, p. 1791–1799, set. 2005b.
PELLETIER, M.; BOSE, A. Self-mending composites incorporating encapsulated mending agents. Applicant: Government of the United States of America. Assignee: Secretary of Homeland Security. US 20170283323A1. Application: 20 jun. 2017. Publication:, , 5 out. 2017.
PORTELLA, K. F.; ROSSA JR., J. Adição de escória de alto forno em argamassas colantes tipo AC-I. Cerâmica, v. 58, p. 542–548, 2012.
PRATES, T. G. M. et al. Autocicatrização de fissuras em produtos cimentícios com o uso de microcápsulas de silicato de sódio. Congresso da Universidade Federal da Bahia (Congresso UFBA 75 anos). Anais...dez. 2021. Disponível em: <https://congresso75anos.ufba.br/wp-content/uploads/2021/11/congresso-ufba-75anos_caderno-resumos.pdf>. Acesso em: 31 maio. 2023
PRATES, T. G. M. et al. Produção de microcápsulas contendo silicato de sódio visando autocicatrização de materiais cimentícios. XIV Congresso Brasileiro de Engenharia Química em Iniciação Científica. Anais...nov. 2022. Disponível em: <https://even3.blob.core.windows.net/anais/547979.pdf>. Acesso em: 30 maio. 2023
PRATES, T. G. M. et al. Produção de microcápsulas contendo silicato de sódio visando autocicatrização de materiais cimentícios. Congresso da Universidade Federal da Bahia (Congresso UFBA 2023). Anais...2023. Disponível em: <https://proext.ufba.br/sites/proext.ufba.br/files/congresso-ufba-2023.1_caderno-resumos_miolo.pdf>. Acesso em: 30 maio. 2023
PROVIS, J. L. Alkali-activated materials. Cement and Concrete Research, v. 114, p. 40–48, dez. 2018.
QURESHI, T. S.; KANELLOPOULOS, A.; AL-TABBAA, A. Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Construction and Building Materials, v. 121, p. 629–643, 15 set. 2016.
RASBAND, W.; DESENVOLVIMENTO COMPARTILHADO POR PESSOAS DE TODO O MUNDO. Image J. National Institutes of Health, , [s.d.]. Disponível em: <https://imagej.nih.gov/ij/>. Acesso em: 3 set. 2023
RASHAD, A. M. Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials, v. 170, p. 757–775, 10 maio 2018.
REINHARDT, H. W.; JOOSS, M. Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cement and Concrete Research, v. 33, n. 7, p. 981–985, 2003.
REMUÑÁN LÓPEZ, C.; FERNÁNDEZ, M. J. A. Tecnologia Farmaceutica. Volumen I: Aspectos fundamentales de los sistemas farmacéuticos y operaciones básicas. Cap 10: Microencapsulación de Medicamentos. 1a Reimpressão ed. Madrid, Spaña: Síntesis, 2001. v. I
REZENDE, M. F. Uso de cinza de bagaço de cana-de-açúcar em cimento Portland como mecanismo de desenvolvimento limpo. Doutorado em Engenharia de Materiais—Ouro Preto: UFOP-CETEC-UEMG, abr. 2016.
RIBEIRO DE SOUZA, L. Design and synthesis of microcapsules using microfluidics for autonomic self-healing in cementitious materials. Thesis for the degree of Doctor—Cambridge: University of Cambridge, jul. 2017.
ROGELJ, J. et al. Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. Em: IPCC (Ed.). Global Warming of 1.5 oC. Cambridge: Cambridge University Press, 2022. p. 93–174.
ROIG-FLORES, M. et al. Self-healing capability of concrete with crystalline admixtures in different environments. Construction and Building Materials, v. 86, p. 1–11, 1 jul. 2015.
ŞAHMARAN, M. et al. Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash. Cement and Concrete Composites, v. 30, n. 10, p. 872–879, 2008.
SCHLUMBERGER. CemFIT Heal flexible self-healing cement system. , 2021.
SEDAGHAT, A.; ZAYED, A.; SANDBERG, P. Measurement and prediction of heat of hydration of portland cement using isothermal conduction calorimetry. Journal of Testing and Evaluation, v. 41, n. 6, nov. 2013.
SEIFAN, M.; BERENJIAN, A. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World Journal of Microbiology and Biotechnology, v. 34, n. 168, 1 nov. 2018.
SENGUL, O. et al. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, v. 43, n. 2–3, p. 671–676, fev. 2011.
SHOJI, A. S. et al. Viability of L. acidophilus microcapsules and their application to buffalo milk yoghurt. Food and Bioproducts Processing, v. 91, n. 2, p. 83–88, 2013.
SIGMAALDRICH.COM. Solução de Silicato de Sódio da Sigma-Aldrich. Disponível em: <https://www.sigmaaldrich.com/BR/pt/product/sigald/338443?context=product>. Acesso em: 17 maio. 2023.
SILVA, C. et al. Administração oral de peptídeos e proteínas: II. Aplicação de métodos de microencapsulação. Revista Brasileira de Ciências Farmacêuticas Brazilian Journal of Pharmaceutical Sciences, v. 39, n. 1, jan. 2003.
SILVA, D. F. et al. Microencapsulation of lycopene by gelatin-pectin complex coacervation. Journal of Food Processing and Preservation, v. 36, n. 2, abr. 2012.
SISOMPHON, K.; COPUROGLU, O.; FRAAIJ, A. Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a self-healing agent in blast furnace slag mortar. Heron, v. 56, n. 1/2, p. 17–36, 2011.
SISOMPHON, K.; COPUROGLU, O.; KOENDERS, E. A. B. Surface crack self healing behaviour of mortars with expansive additives. 3rd International Conference on Self-Healing Materials . Anais...Bath, UK: jun. 2011.
SISOMPHON, K.; COPUROGLU, O.; KOENDERS, E. A. B. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cement and Concrete Composites, v. 34, n. 4, p. 566–574, abr. 2012.
SISOMPHON, K.; COPUROGLU, O.; KOENDERS, E. A. B. Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Construction and Building Materials, v. 42, p. 217–224, mar. 2013.
SISTEMA DE ESTIMATIVAS DE EMISSÕES DE GASES DE EFEITO ESTUFA (SEEG). EMISSÕES TOTAIS. Disponível em: <https://plataforma.seeg.eco.br/total_emission>.
SNOECK, D. et al. Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. Journal of Intelligent Material Systems and Structures, v. 25, n. 1, p. 13–24, 2014.
SNOECK, DIDIER.; PEL, L.; DE BELIE, N. Autogenous Healing in Cementitious Materials with Superabsorbent Polymers Quantified by Means of NMR. Scientific Reports, v. 10, n. 1, p. 642, 20 jan. 2020.
SOEIRO, J. M. et al. Ensaio não destrutivo-ensaio de ultrassom e pacômetro na avaliação da qualidade do concreto armado. Congresso Técnico Científico da Engenharia e da Agronomia - CONTECC’2018. Anais...Maceió-Al: 2018.
SOUZA, C. J. F. et al. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, n. 1, p. 375–381, 2013.
STROTHER, P. DEL. Manufacture of Portland Cements. Em: HEWLETT, P. C.; LISKA, M. (Eds.). Lea’s Chemistry of Cement and Concrete. 5. ed. Amsterdã: Elsevier, 2019. p. 31–56.
SUMATHI, A. et al. Development of bacterium for crack healing and improving properties of concrete under wet–dry and full-wet curing. Sustainability, v. 12, n. 10346, p. 1–20, dez. 2020.
TA INSTRUMENTS/WATERS CORPORATION. TAM AIR: ISOTHERMAL CALORIMETRY. USA, ago. 2020.
TECNOMOR. Concreto Reforçado com Fibras (CRF). Disponível em: <https://tecnomor.com.br/blog/concreto-reforcado-com-fibras-crf/#:~:text=Outros%20par%C3%A2metros%20influenciam%20na%20resist%C3%AAncia,de%20resist%C3%AAncia%20de%20at%C3%A9%20130%25.>. Acesso em: 13 dez. 2023.
TIMILSENA, Y. P. et al. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, v. 121, p. 1276–1286, jan. 2019.
TITTELBOOM, K. VAN et al. Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation. Construction and Building Materials, v. 37, p. 349–359, dez. 2012.
TRASK, R. S.; BOND, I. P. Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Materials and Structures, v. 15, n. 3, p. 704–710, jun. 2006.
TROUT, E. A. R. The History of Calcareous Cements. Em: HEWLETT, P. C.; LISKA, M. (Eds.). Lea’s Chemistry of Cement and Concrete. 5. ed. Amsterdã: Elsevier, 2019. p. 1–29.
VAN TITTELBOOM, K. et al. Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cement and Concrete Composites, v. 33, n. 4, p. 497–505, abr. 2011.
VAN TITTELBOOM, K.; DE BELIE, N. Self-healing in cementitious materials-a review. Materials, v. 6, n. 6, p. 2182–2217, 27 maio 2013.
VILELA, H. T. P.; TEIXEIRA FILHO, M. G.; CAMPOS NETO, T. F. Efeitos do uso de aditivos cristalizantes na reação álcali-agregado e absorção das argamassas. Revista ALCONPAT, v. 11, n. 1, p. 1–17, 1 jan. 2021.
WADSÖ, L. et al. Calorimetry. Em: SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. (Eds.). A practical guide to microstructural analysis of cementitious materials. Boca Raton: CRC Press, Taylor & Francis Group, 2016. p. 37–74.
WANG, J. Y. et al. Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, v. 56, p. 139–152, 2014.
WEINBRECK, F. et al. Complex coacervation of whey proteins and gum arabic. Biomacromolecules, v. 4, n. 2, p. 293–303, 1 mar. 2003.
WHITE, S. R. et al. Autonomic healing of polymer composites. Nature, v. 409, p. 794–797, 2001.
WIKTOR, V.; JONKERS, H. M. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, v. 33, n. 7, p. 763–770, ago. 2011.
WILEY-VCH, W. Self-healing materials: Fundamentals, Design Strategies, and Applications. Pune, India: Wiley-VCH, 2009.
ZHANG, C. Y. et al. Accounting process-related CO2 emissions from global cement production under Shared Socioeconomic Pathways. Journal of Cleaner Production, v. 184, p. 451–465, 20 maio 2018.
ZHANG, J. et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Construction and Building Materials, v. 148, p. 610–617, 1 set. 2017. | pt_BR |